Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(3): e9801, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36937065

RESUMO

Persistent soil seed banks are characteristic of Arctostaphylos (Ericaceae) species in the Mediterranean-climate California Floristic Province. While most species are obligate seeders, regeneration of stands of all Arctostaphylos species ultimately depends on post-fire seedling recruitment. Arctostaphylos seed banks are created, in large part, by scatter-hoarding rodents. Variation in fruit morphology, therefore, is expected to impact the Arctostaphylos-rodent interaction. Seeds produce sufficient rewards (nutritious mature embryo) to entice rodents to disperse and ultimately bury seeds in the soil. Hard seed coats increase the time required to extract the embryo, encouraging rodents to choose storage over immediate predation, and nutlets are frequently empty. We assessed the variation of fruit nutlet fusion and seed viability among 38 Arctostaphylos taxa. Factors such as latitude, elevation, life history, ploidy, and phylogenetic position were also analyzed. Generalized mixed-effects models were used to determine the factors contributing to variation in fruit nutlet fusion and seed viability. Our results indicate that fruit volume and shape are the most important variables affecting nutlet fusion and seed viability. Additionally, other potential influences only show a weak correlation and are not predicted to significantly impact nutlet fusion or seed viability. These findings provide insights into evolved strategies used by plants to increase reproductive success via scatter-hoarding rodents. Our study benefits the conservation and restoration of Arctostaphylos stands by emphasizing the importance of animal-mediated dispersal and providing estimates of seed viability for different species. With the anticipated effects of climate change, such as departures from historic fire regimes, the preservation of the relationship between plants and animal foragers is crucial for the continued survival of Arctostaphylos and California's evergreen chaparral.

2.
Am J Bot ; 109(3): 486-493, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35253221

RESUMO

PREMISE: Does the seed size-seed number allocation trade-off model apply to long-term persistent soil seed banks? This trade-off between seed size versus number of seeds produced is usually applied at a single population on an annual basis. Our question is how this model might apply to close relatives that produce dormant seed forming long-term persistent soil seed banks. These two criteria allow a focus on divergent evolution of conspecifics and permits us to isolate seed size in the spectrum of life history traits that may be influencing seed traits, and on how seed size influences accumulation and persistence in the soil. METHODS: In California, Arctostaphylos species only produce physiologically dormant seed that are fire-stimulated and that vary in seed size permitting seed size-seed bank density relationship as a test of the seed size-seed number allocation model. Soil seed banks of 10 species of Arctostaphylos were sampled with fruit volumes ranging from 21-1063 mm3 . Seed bank density was determined by hand extraction from soil samples. RESULTS: We found that seed bank densities were significantly negatively related to fruit or seed size. CONCLUSIONS: Rather than an issue of allocational trade-off between size and number, we interpret these results as reflecting seed predation and postfire seedling establishment. Seed bank densities, even after decades, generally were less than one or two-year's seed production, suggesting intense seed predation. Burial by scatter-hoarding rodents provided sufficient seeds deep enough for survival of fire. Variation on seed size suggests seedling establishment constraints, but it needs further research.


Assuntos
Incêndios , Banco de Sementes , Plântula , Sementes/fisiologia , Solo
3.
PLoS One ; 16(6): e0250290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34129603

RESUMO

AIMS: The principal chaparral species in California, Adenostoma fasciculatum, an evergreen, sclerophyllous shrub, is broadly distributed and provides habitat and food resources for a large and diverse animal community. The effects of climate change, including elevated temperatures, fire frequency and severity, along with increased urban encroachment, have placed pressure on chaparral habitats in California. Our goal is to investigate aspects of reproductive ecology as a measure of the potential resiliency of A. fasciculatum. We focus on seed rain (all seed falling into the seed traps regardless of origin) and seed banks in the context of plant-animal interactions and regeneration. METHODS: Stand recovery following disturbance is achieved through both resprouting and germination from established persistent soil seed banks. In this study we focus on seed ecology using a series of experiments to document the length and quantity of seed rain, seed predation, parsing the importance of the community of granivores, and evaluating the connection between stand age and germination rate from soil seed banks. IMPORTANT FINDINGS: Our research documented an 8-month seed rain duration with over 1 million seeds per m2, multiple seed predators including passerines (songbirds) and rodents, and points to the possibility of native ants playing a role in the seed dispersal process. This is important given the recent advancement of the invasive Argentine ant (Linepthema humile) into Californian chaparral. This research demonstrates a clear relationship between A. fasciculatum and both resident and migratory granivores in the chaparral. We documented that a 39-year-old stand had higher germination rates than those which were 16, 20, 41 and 71 years old and how seed banks play a major role in assuring resiliency following fire. These findings are important for wildland managers to assure the continued resiliency of A. fasciculatum.


Assuntos
Herbivoria/fisiologia , Rosaceae/metabolismo , Sementes/metabolismo , Animais , California , Ecologia/métodos , Ecossistema , Comportamento Alimentar , Incêndios , Reprodução/fisiologia , Roedores , Banco de Sementes , Sementes/classificação , Solo
4.
Am J Bot ; 107(12): 1798-1814, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33274449

RESUMO

PREMISE: Hybridization plays a key role in introgressive adaptation, speciation, and adaptive radiation as a source of evolutionary innovation. Hybridization is considered common in Arctostaphylos, yet species boundaries are retained in stands containing multiple species. Arctostaphylos contains diploids and tetraploids, and recent phylogenies indicate two clades; we hypothesize combinations of these traits limit or promote hybridization rates. METHODS: We statistically analyzed co-occurrence patterns of species by clade membership and ploidy level from 87 random 0.1 ha plots. We sampled multiple sites to analyze for percent hybridization based on morphology. Finally, phenophases were analyzed by scoring herbarium sheets for a large number of taxa from both clades as well as tetraploids, and second, surveying three field sites over two years for divergence in phenological stages between co-occurring taxa. RESULTS: Most taxa in Arctostaphylos are allopatric relative to other congenerics. When two taxa co-occur, the patterns are a diploid with a tetraploid, or two diploids from different clades. When three taxa co-occur, the pattern is two diploids from different clades and a tetraploid. Field and herbarium data both indicate flowering phenology is displaced between diploids from the two clades; one of the diploid clades and tetraploids overlap considerably. CONCLUSIONS: The two deep clades in Arctostaphylos are genetically distant, with hybrids rare or non-existent when taxa co-occur. Reproductive isolation between clades is enhanced by displaced flowering phenology for co-occurring species. Within clades, taxa appear to have few reproductive barriers other than an allopatric distribution or different ploidy levels.


Assuntos
Arctostaphylos , Isolamento Reprodutivo , Diploide , Hibridização Genética , Simpatria
5.
Am J Bot ; 107(6): 923-940, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32498125

RESUMO

PREMISE: Delimiting biodiversity units is difficult in organisms in which differentiation is obscured by hybridization, plasticity, and other factors that blur phenotypic boundaries. Such work is more complicated when the focal units are subspecies, the definition of which has not been broadly explored in the era of modern genetic methods. Eastwood manzanita (Arctostaphylos glandulosa Eastw.) is a widely distributed and morphologically complex chaparral shrub species with much subspecific variation, which has proven challenging to categorize. Currently 10 subspecies are recognized, however, many of them are not geographically segregated, and morphological intermediates are common. Subspecies delimitation is of particular importance in this species because two of the subspecies are rare. The goal of this study was to apply an evolutionary definition of "subspecies" to characterize structure within Eastwood manzanita. METHODS: We used publicly available geospatial environmental data and reduced-representation genome sequencing to characterize environmental and genetic differentiation among subspecies. In addition, we tested whether subspecies could be differentiated by environmentally associated genetic variation. RESULTS: Our analyses do not show genetic differentiation among subspecies of Eastwood manzanita, with the exception of one of the two rare subspecies. In addition, our environmental analyses did not show ecological differentiation, though limitations of the analysis prevent strong conclusions. CONCLUSIONS: Genetic structure within Eastwood manzanita does not correspond to current subspecies circumscriptions, but rather reflects geographic distribution. Our study suggests that subspecies concepts need to be reconsidered in long-lived plant species, especially in the age of next-generation sequencing.


Assuntos
Evolução Biológica , Deriva Genética , Biodiversidade , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização Genética , Filogenia
6.
Am J Bot ; 106(6): 864-878, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31216071

RESUMO

PREMISE: In plant groups with limited intrinsic barriers to gene flow, it is thought that environmental conditions can modulate interspecific genetic exchange. Oaks are known for limited barriers to gene flow among closely related species. Here, we use Quercus as a living laboratory in which to pursue a fundamental question in plant evolution: Do environmental gradients restrict or promote genetic exchange between species? METHODS: We focused on two North American oaks, the rare Quercus dumosa and the widespread Q. berberidifolia. We sampled intensively along a contact zone in California, USA. We sequenced restriction site-associated DNA markers and measured vegetative phenotype. We tested for genetic exchange, the association with climate, and the effect on phenotype. RESULTS: There is evidence for genetic exchange between the species. Admixed plants are found in areas of intermediate climate, while less admixed plants are found at the extremes of the climatic gradient. Genetic and phenotypic patterns are out of phase in the contact zone; some plants display the phenotype of one species but are genetically associated with another. CONCLUSIONS: Our results support the hypothesis that a strong climatic gradient can promote genetic exchange between species. The overall weak correlation between genotype and phenotype in the contact zone between the species suggests that genetic exchange can lead to the breakdown of trait combinations used to define species. This incongruency predicts ongoing problems for conservation of Q. dumosa, with implications for conservation of other oaks.


Assuntos
Clima , Fluxo Gênico , Quercus/genética , California , Marcadores Genéticos/genética , Hibridização Genética
7.
Ecol Evol ; 8(15): 7250-7260, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30151146

RESUMO

Within global biodiversity hotspots such as the California Floristic Province, local patterns of diversity must be better understood to prioritize conservation for the greatest number of species. This study investigates patterns of vascular plant diversity in relation to coast-inland environmental gradients in the shrublands of Central California known as northern coastal scrub. We sampled coastal shrublands of the San Francisco Bay Area at coastal and inland locations, modeled fine-scale climatic variables, and developed an index for local exposure to maritime salts. We compared diversity, composition, and structure of the coastal and inland plots using indirect gradient analysis and estimated species accumulation using rarefaction curves. Coastal plots were significantly higher in alpha, beta, and gamma diversity than inland plots. Plant diversity (effective species number) in coastal plots was 2.1 times greater than inland plots, and beta diversity was 1.9 times greater. Estimated richness by rarefaction was 2.05 times greater in coastal sites than inland sites. Salt deposition and water availability were the abiotic process most strongly correlated with increased maritime plant diversity and compositional differences. Stands of northern coastal scrub on the immediate coast with higher maritime influence exhibit markedly higher plant diversity than most interior stands, paralleling previous work in other vegetation types in this region. These studies suggest that the California coastline deserves special consideration for botanical conservation. Fine-scale climatic models of cloud frequency, water availability, and the salt deposition index presented here can be used to define priority areas for plant conservation in California and other coastal regions worldwide.

8.
CBE Life Sci Educ ; 17(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29326102

RESUMO

Many efforts to improve science teaching in higher education focus on a few faculty members at an institution at a time, with limited published evidence on attempts to engage faculty across entire departments. We created a long-term, department-wide collaborative professional development program, Biology Faculty Explorations in Scientific Teaching (Biology FEST). Across 3 years of Biology FEST, 89% of the department's faculty completed a weeklong scientific teaching institute, and 83% of eligible instructors participated in additional semester-long follow-up programs. A semester after institute completion, the majority of Biology FEST alumni reported adding active learning to their courses. These instructor self-reports were corroborated by audio analysis of classroom noise and surveys of students in biology courses on the frequency of active-learning techniques used in classes taught by Biology FEST alumni and nonalumni. Three years after Biology FEST launched, faculty participants overwhelmingly reported that their teaching was positively affected. Unexpectedly, most respondents also believed that they had improved relationships with departmental colleagues and felt a greater sense of belonging to the department. Overall, our results indicate that biology department-wide collaborative efforts to develop scientific teaching skills can indeed attract large numbers of faculty, spark widespread change in teaching practices, and improve departmental relations.


Assuntos
Biologia/educação , Desenvolvimento de Programas , Ensino , Docentes , Objetivos , Humanos , Motivação , Aprendizagem Baseada em Problemas , Estudantes , Inquéritos e Questionários
9.
PLoS One ; 10(7): e0132625, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26151560

RESUMO

Because of their influence on succession and other community interactions, large-scale, infrequent natural disturbances also should play a major role in mutualistic interactions. Using field data and experiments, I test whether mutualisms have been incorporated into large-scale wildfire by whether the outcomes of a mutualism depend on disturbance. In this study a seed dispersal mutualism is shown to depend on infrequent, large-scale disturbances. A dominant shrubland plant (Arctostaphylos species) produces seeds that make up a persistent soil seed bank and requires fire to germinate. In post-fire stands, I show that seedlings emerging from rodent caches dominate sites experiencing higher fire intensity. Field experiments show that rodents (Perimyscus californicus, P. boylii) do cache Arctostaphylos fruit and bury most seed caches to a sufficient depth to survive a killing heat pulse that a fire might drive into the soil. While the rodent dispersal and caching behavior itself has not changed compared to other habitats, the environmental transformation caused by wildfire converts the caching burial of seed from a dispersal process to a plant fire adaptive trait, and provides the context for stimulating subsequent life history evolution in the plant host.


Assuntos
Incêndios , Dispersão de Sementes/fisiologia , Simbiose , Animais , Frutas/fisiologia , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologia , Roedores , Plântula/fisiologia
10.
Ecol Evol ; 4(18): 3662-74, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25478156

RESUMO

We investigated the hypothesis that maritime climatic factors associated with summer fog and low cloud stratus (summer marine layer) help explain the compositional diversity of chaparral in the coast range of central California. We randomly sampled chaparral species composition in 0.1-hectare plots along a coast-to-interior gradient. For each plot, climatic variables were estimated and soil samples were analyzed. We used Cluster Analysis and Principle Components Analysis to objectively categorize plots into climate zone groups. Climate variables, vegetation composition and various diversity measures were compared across climate zone groups using ANOVA and nonmetric multidimensional scaling. Differences in climatic variables that relate to summer moisture availability and winter freeze events explained the majority of variance in measured conditions and coincided with three chaparral assemblages: maritime (lowland coast where the summer marine layer was strongest), transition (upland coast with mild summer marine layer influence and greater winter precipitation), and interior sites that generally lacked late summer water availability from either source. Species turnover (ß-diversity) was higher among maritime and transition sites than interior sites. Coastal chaparral differs from interior chaparral in having a higher obligate seeder to facultative seeder (resprouter) ratio and by being dominated by various Arctostaphylos species as opposed to the interior dominant, Adenostoma fasciculatum. The maritime climate influence along the California central coast is associated with patterns of woody plant composition and ß-diversity among sites. Summer fog in coastal lowlands and higher winter precipitation in coastal uplands combine to lower late dry season water deficit in coastal chaparral and contribute to longer fire return intervals that are associated with obligate seeders and more local endemism. Soil nutrients are comparatively less important in explaining plant community composition, but heterogeneous azonal soils contribute to local endemism and promote isolated chaparral patches within the dominant forest vegetation along the coast.

11.
PLoS One ; 9(2): e88760, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24551156

RESUMO

Tidal marshes maintain elevation relative to sea level through accumulation of mineral and organic matter, yet this dynamic accumulation feedback mechanism has not been modeled widely in the context of accelerated sea-level rise. Uncertainties exist about tidal marsh resiliency to accelerated sea-level rise, reduced sediment supply, reduced plant productivity under increased inundation, and limited upland habitat for marsh migration. We examined marsh resiliency under these uncertainties using the Marsh Equilibrium Model, a mechanistic, elevation-based soil cohort model, using a rich data set of plant productivity and physical properties from sites across the estuarine salinity gradient. Four tidal marshes were chosen along this gradient: two islands and two with adjacent uplands. Varying century sea-level rise (52, 100, 165, 180 cm) and suspended sediment concentrations (100%, 50%, and 25% of current concentrations), we simulated marsh accretion across vegetated elevations for 100 years, applying the results to high spatial resolution digital elevation models to quantify potential changes in marsh distributions. At low rates of sea-level rise and mid-high sediment concentrations, all marshes maintained vegetated elevations indicative of mid/high marsh habitat. With century sea-level rise at 100 and 165 cm, marshes shifted to low marsh elevations; mid/high marsh elevations were found only in former uplands. At the highest century sea-level rise and lowest sediment concentrations, the island marshes became dominated by mudflat elevations. Under the same sediment concentrations, low salinity brackish marshes containing highly productive vegetation had slower elevation loss compared to more saline sites with lower productivity. A similar trend was documented when comparing against a marsh accretion model that did not model vegetation feedbacks. Elevation predictions using the Marsh Equilibrium Model highlight the importance of including vegetation responses to sea-level rise. These results also emphasize the importance of adjacent uplands for long-term marsh survival and incorporating such areas in conservation planning efforts.


Assuntos
Modelos Estatísticos , Ondas de Maré/estatística & dados numéricos , Áreas Alagadas , Sedimentos Geológicos/química , Salinidade , Solo/química , Fatores de Tempo
12.
Oecologia ; 170(2): 325-37, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22526938

RESUMO

Mediterranean-type climate (MTC) regions around the world are notable for cool, wet winters and hot, dry summers. A dominant vegetation type in all five MTC regions is evergreen, sclerophyllous shrubland, called chaparral in California. The extreme summer dry season in California is moderated by a persistent low-elevation layer of marine fog and cloud cover along the margin of the Pacific coast. We tested whether late dry season water potentials (Ψ(min)) of chaparral shrubs, such as Arctostaphylos species in central California, are influenced by this coast-to-interior climate gradient. Lowland coastal (maritime) shrubs were found to have significantly less negative Ψ(min) than upland interior shrubs (interior), and stable isotope (δ(13)C) values exhibited greater water use efficiency in the interior. Post-fire resprouter shrubs (resprouters) had significantly less negative Ψ(min) than co-occurring obligate seeder shrubs (seeders) in interior and transitional chaparral, possibly because resprouters have deeper root systems with better access to subsurface water than shallow-rooted seeders. Unexpectedly, maritime resprouters and seeders did not differ significantly in their Ψ(min), possibly reflecting more favorable water availability for shrubs influenced by the summer marine layer. Microclimate and soil data also suggest that maritime habitats have more favorable water availability than the interior. While maritime seeders constitute the majority of local Arctostaphylos endemics, they exhibited significantly greater vulnerability to xylem cavitation than interior seeders. Because rare seeders in maritime chaparral are more vulnerable to xylem cavitation than interior seeders, the potential breakdown of the summer marine layer along the coast is of potential conservation concern.


Assuntos
Ericaceae/fisiologia , Água/metabolismo , California , Clima , Incêndios , Estações do Ano , Tempo (Meteorologia)
13.
PLoS One ; 6(11): e27388, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22110638

RESUMO

BACKGROUND: Tidal marshes will be threatened by increasing rates of sea-level rise (SLR) over the next century. Managers seek guidance on whether existing and restored marshes will be resilient under a range of potential future conditions, and on prioritizing marsh restoration and conservation activities. METHODOLOGY: Building upon established models, we developed a hybrid approach that involves a mechanistic treatment of marsh accretion dynamics and incorporates spatial variation at a scale relevant for conservation and restoration decision-making. We applied this model to San Francisco Bay, using best-available elevation data and estimates of sediment supply and organic matter accumulation developed for 15 Bay subregions. Accretion models were run over 100 years for 70 combinations of starting elevation, mineral sediment, organic matter, and SLR assumptions. Results were applied spatially to evaluate eight Bay-wide climate change scenarios. PRINCIPAL FINDINGS: Model results indicated that under a high rate of SLR (1.65 m/century), short-term restoration of diked subtidal baylands to mid marsh elevations (-0.2 m MHHW) could be achieved over the next century with sediment concentrations greater than 200 mg/L. However, suspended sediment concentrations greater than 300 mg/L would be required for 100-year mid marsh sustainability (i.e., no elevation loss). Organic matter accumulation had minimal impacts on this threshold. Bay-wide projections of marsh habitat area varied substantially, depending primarily on SLR and sediment assumptions. Across all scenarios, however, the model projected a shift in the mix of intertidal habitats, with a loss of high marsh and gains in low marsh and mudflats. CONCLUSIONS/SIGNIFICANCE: Results suggest a bleak prognosis for long-term natural tidal marsh sustainability under a high-SLR scenario. To minimize marsh loss, we recommend conserving adjacent uplands for marsh migration, redistributing dredged sediment to raise elevations, and concentrating restoration efforts in sediment-rich areas. To assist land managers, we developed a web-based decision support tool (www.prbo.org/sfbayslr).


Assuntos
Baías , Mudança Climática , Conservação dos Recursos Naturais , Fenômenos Geológicos , Modelos Teóricos , Áreas Alagadas , Baías/química , Ecossistema , Sedimentos Geológicos/química , Compostos Orgânicos/química , São Francisco , Fatores de Tempo
14.
Appl Environ Microbiol ; 69(7): 3772-6, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12839743

RESUMO

Increasing soil nutrients through litter manipulation, pollution, or fertilization can adversely affect ectomycorrhizal (EM) communities by inhibiting fungal growth. In this study, we used molecular genetic methods to determine the effects of litter addition on the EM community of a Pinus contorta stand in Yellowstone National Park that regenerated after a stand-replacing fire. Two controls were used; in unmodified control plots nothing was added to the soil, and in perlite plots perlite, a chemically neutral substance, was added to maintain soil moisture and temperature at levels similar to those under litter. We found that (i) species richness did not change significantly following perlite addition (2.6 +/- 0.3 species/core in control plots, compared with 2.3 +/- 0.3 species/core in perlite plots) but decreased significantly (P < 0.05) following litter addition (1.8 +/- 0.3 species/core); (ii) EM infection was not affected by the addition of perlite but increased significantly (P < 0.001) in response to litter addition, and the increase occurred only in the upper soil layer, directly adjacent to the added litter; and (iii) Suillus granulatus, Wilcoxina mikolae, and agaricoid DD were the dominant organisms in controls, but the levels of W. mikolae and agaricoid DD decreased significantly in response to both perlite and litter addition. The relative levels of S. granulatus and a fourth fungus, Cortinariaceae species 2, increased significantly (P < 0.01 and P < 0.05, respectively) following litter addition. Thus, litter addition resulted in some negative effects that may be attributable to moisture-temperature relationships rather than to the increased nutrients associated with litter. Some species respond positively to litter addition, indicating that there are differences in their physiologies. Hence, changes in the EM community induced by litter accumulation also may affect ecosystem function.


Assuntos
Ecossistema , Fungos/crescimento & desenvolvimento , Micorrizas/efeitos dos fármacos , Pinus/microbiologia , Resíduos/análise , Óxido de Alumínio/farmacologia , Agricultura Florestal/métodos , Fungos/classificação , Dióxido de Silício/farmacologia , Solo/análise , Microbiologia do Solo
15.
Oecologia ; 127(4): 533-539, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-28547491

RESUMO

Molecular genetic methods were used to determine whether artificial defoliation affects ectomycorrhizal (EM) colonization, EM fungal species richness, and species composition in a mixed Pinus contorta (lodgepole pine)/Picea engelmannii (Engelmann spruce) forest in Yellowstone National Park, Wyoming. All lodgepole pines in three replicate plots were defoliated 50%, while Engelmann spruce were left untreated. This was done to determine how defoliation of one conifer species would affect EM mutualisms of both treated and neighboring, untreated conifers. The results indicated no significant effect on either EM colonization (142.0 EM tips/core in control plots and 142.4 in treatment plots) or species richness (5.0 species/core in controls and 4.5 in treatments). However, the relative abundance of EM of the two tree species shifted from a ratio of approximately 6:1 without treatment (lodgepole EM:spruce EM), to a near 1:1 ratio post-treatment. This shift may be responsible for maintaining total EM colonization and species richness following defoliation. In addition, EM species composition changed significantly post-defoliation; the system dominant, an Inocybe species, was rare in defoliation plots, while Agaricoid and Suilloid species that were rare in controls were dominant in treatments. Furthermore, species of EM fungi associating with both lodgepole pine and Engelmann spruce were affected, which indicates that changing the photosynthetic capacity of one species can affect mycorrhizal associations of neighboring non-defoliated trees.

16.
Oecologia ; 119(1): 36-45, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28308157

RESUMO

The occurrence of mature individuals of Pseudotsuga menziesii in stands of Arctostaphylos species mark the initial stages of mixed evergreen forest invasion into chaparral in central coastal California. We planted two cohorts of P. menziesii seeds at three sites under stands of two Arctostaphylos species and Adenostoma fasciculatum in order to determine whether first-year seedling emergence and survival, particularly during the regular summer drought, underlie the spatial distribution of mature trees observed in chaparral. Regardless of the chaparral species they were planted under, P. menziesii seeds that were not protected from vertebrate predation displayed very little emergence and no survival. In contrast, emergence of P. menziesii that were protected from vertebrate predators was much higher but still did not significantly differ among the three chaparral species. However, survival of protected seedlings under Arctostaphylos glandulosa was much greater than under A. fasciculatum, with intermediate survival under Arctostaphylos montana. While mortality of protected seedlings due to insect herbivory, fungal infection, and disturbance displayed no consistent patterns, summer drought mortality appeared to drive the patterns of survival of P. menziesii under the different chaparral species. These emergence, mortality, and survival data suggest that spatial patterns of P. menziesii recruitment in chaparral are driven by first-year summer drought seedling mortality, but only in years when seeds and seedlings are released from vertebrate predation pressure. Because the first-year drought mortality and survival patterns of P. menziesii seedlings differed strongly depending on the chaparral species, we examined the additional hypothesis that these patterns are associated with differences in the availability of soil moisture under different chaparral species. Both higher survival and lower drought mortality of P. menziesii seedlings were associated with higher soil water potential under Arctostaphylos stands during the summer drought, especially in the subsurface soil. The data suggest that Arctostaphylos stands, particularly stands of A. glandulosa, ameliorate xeric summer conditions to a degree that facilitates first-year establishment of P. menziesii and strongly influences spatial distribution of mature trees.

17.
Oecologia ; 37(3): 315-320, 1979 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28309218

RESUMO

In some parts of southern California, Pholistoma auritum dominates understory vegetation beneath isolated Quercus agrifolia trees occurring in annual grasslands. Pure stands of P. auritum are maintained in successive years although adjacent to grasses with easily dispersed propagules. Lack of establishment by the grasses in areas covered with previous season's P. auritum litter suggested a germination inhibition mechanism. Laboratory and field tests indicated allelopathic inhibition of grass seedlings by the herb litter. Dominance by an understory species is evaluated in reference to community organization and stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA