Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(18): 12595-12600, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38682306

RESUMO

Chemical reactions are often characterized by their transition state, which defines the critical geometry the molecule must pass through to move from reactants to products. Roaming provides an alternative picture, where in a dissociation reaction, the bond breaking is frustrated and a loosely bound intermediate is formed. Following bond breaking, the two partners are seen to roam around each other at distances of several Ångstroms, forming a loosely bound, and structurally ill-defined, intermediate that can subsequently lead to reactive or unreactive collisions. Here, we present a direct and time-resolved experimental measurement of roaming. By measuring the photoelectron spectrum of UV-excited acetaldehyde with a femtosecond extreme ultraviolet pulse, we captured spectral signatures of all of the key reactive structures, including that of the roaming intermediate. This provided a direct experimental measurement of the roaming process and allowed us to identify the time scales by which the roaming intermediate is formed and removed and the electronic potential surfaces upon which roaming proceeds.

2.
J Phys Chem Lett ; 15(17): 4587-4592, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38656191

RESUMO

Tautomers are ubiquitous throughout chemistry and typically considered inseparable in solution. Yet (bio)chemical activity is highly tautomer-specific, with common examples being the amino and nucleic acids. While tautomers exist in an equilibrium in solution, in the cold environment of a molecular beam the barrier to tautomerization is typically much too high for interconversion, and tautomers can be considered separate species. Here we demonstrate the first separation of tautomers within a molecular beam and the production of tautomerically pure gas-phase samples. We show this for the 2-pyridone/2-hydroxypyridine system, an important structural motif in both uracil and cytosine. Spatial separation of the tautomers is achieved via electrostatic deflection in strong inhomogeneous fields. We furthermore collect tautomer-resolved photoelectron spectra using femtosecond multiphoton ionization. This paves the way for studying the structure-function-dynamic relationship on the level of individual tautomers, using approaches that typically lack the resolution to do so, such as ultrafast dynamics experiments.

3.
Sci Adv ; 8(38): eabq8629, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36149951

RESUMO

Semiconductors in their optical-fiber forms are desirable. Single-crystal organometallic halide perovskites have attractive optoelectronic properties and therefore are suitable fiber-optic platforms. However, single-crystal organometallic perovskite optical fibers have not been reported before due to the challenge of one-directional single-crystal growth in solution. Here, we report a solution-processed approach to continuously grow single-crystal organometallic perovskite optical fibers with controllable diameters and lengths. For single-crystal MAPbBr3 (MA = CH3NH3+) perovskite optical fiber made using our method, it demonstrates low transmission losses (<0.7 dB/cm), mechanical flexibilities (a bending radius down to 3.5 mm), and mechanical deformation-tunable photoluminescence in organometallic perovskites. Moreover, the light confinement provided by our organometallic perovskite optical fibers leads to three-photon absorption (3PA), in contrast with 2PA in bulk single crystals under the same experimental conditions. The single-crystal organometallic perovskite optical fibers have the potential in future optoelectronic applications.

4.
Chem Sci ; 13(10): 2909-2918, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35382459

RESUMO

Thiomaleimides undergo efficient intermolecular [2 + 2] photocycloaddition reactions and offer applications from photochemical peptide stapling to polymer crosslinking; however, the reactions are limited to the formation of the exo head-to-head isomers. Herein, we present an intramolecular variation which completely reverses the stereochemical outcome of this photoreaction, quantitatively generating endo adducts which minimise the structural disturbance of the disulfide staple and afford a 10-fold increase in quantum yield. We demonstrate the application of this reaction on a protein scaffold, using light to confer thiol stability to an antibody fragment conjugate. To understand more about this intriguing class of [2 + 2] photocycloadditions, we have used transient absorption spectroscopy (electronic and vibrational) to study the excited states involved. The initially formed S2 (π1π*) excited state is observed to decay to the S1 (n1π*) state before intersystem crossing to a triplet state. An accelerated intramolecular C-C bond formation provides evidence to explain the increased efficiency of the reaction, and the impact of the various excited states on the carbonyl vibrational modes is discussed.

5.
Phys Chem Chem Phys ; 22(44): 25695-25703, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33146165

RESUMO

Femtosecond pump-probe photoelectron spectroscopy measurements using an extreme ultraviolet probe have been made on the photodissociation dynamics of UV (269 nm) excited CH3I. The UV excitation leads to population of the 3Q0 state which rapidly dissociates. The dissociation is manifested as shifts in the measured photoelectron kinetic energy that map the extending C-I bond. The increased energy available in the XUV probe relative to a UV probe means the dynamics are followed over the chemically important region as far as C-I bond lengths of approximately 4 Å.

6.
Phys Chem Chem Phys ; 22(43): 25272-25283, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33135692

RESUMO

The first two excitation bands below 7 eV in the electronic absorption spectrum of maleimide are investigated using a model Hamiltonian including four low-lying singlet excited states within the manifold of 24 vibrational modes. The role of non-adiabatic effects is studied and shines light on both the broad, inter-state coupling-dominated spectral band as well as the fine-structured, not-so-strong coupled band. Calculations have been performed using the Multiconfigurational Time-Dependent Hartree (MCTDH) wavepacket propagation method as well as its multilayer version (ML-MCTDH) using a quadratic vibronic coupling (QVC) Hamiltonian model where parameters are obtained from fitting adiabatic potential energy surfaces computed by ab initio methods. The quantum dynamics calculations provide information on the relaxation dynamics and the vibrational modes involved. Already with a low-order vibronic coupling model and only a few modes being considered, a quantitative agreement with the experimental spectrum is obtained. However, it is found that all modes need to be considered to get a full picture of the photo-excited relaxation dynamics of this molecule.

7.
Phys Chem Chem Phys ; 22(34): 19022-19032, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32808948

RESUMO

Firefly bioluminescence is exploited widely in imaging in the biochemical and biomedical sciences; however, our fundamental understanding of the electronic structure and relaxation processes of the oxyluciferin that emits the light is still rudimentary. Here, we employ photoelectron spectroscopy and quantum chemistry calculations to investigate the electronic structure and relaxation of a series of model oxyluciferin anions. We find that changing the deprotonation site has a dramatic influence on the relaxation pathway following photoexcitation of higher lying electronically excited states. The keto form of the oxyluciferin anion is found to undergo internal conversion to the fluorescent S1 state, whereas we find evidence to suggest that the enol and enolate forms undergo internal conversion to a dipole bound state, possibly via the fluorescent S1 state. Partially resolved vibrational structure points towards the involvement of out-of-plane torsional motions in internal conversion to the dipole bound state, emphasising the combined electronic and structural role that the microenvironment plays in controlling the electronic relaxation pathway in the enzyme.


Assuntos
Ânions/química , Fenômenos Eletromagnéticos , Indóis/química , Pirazinas/química , Animais , Vaga-Lumes/química , Modelos Químicos , Espectroscopia Fotoeletrônica
8.
Rev Sci Instrum ; 90(8): 083104, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472605

RESUMO

A new recirculating liquid-microjet photoelectron spectrometer for multiphoton ultraviolet photoelectron spectroscopy is described. A recirculating system is essential for studying samples that are only available in relatively small quantities. The reduction in background pressure when using the recirculating system compared to a liquid-nitrogen cold-trap results in a significant improvement in the quality of the photoelectron spectra. Moreover, the recirculating system results in a negligible streaming potential. The instrument design, operation, and characterization are described in detail, and its performance is illustrated by comparing a photoelectron spectrum of aqueous phenol recorded using the recirculating system with one recorded using a liquid nitrogen cold-trap.

9.
J Extracell Vesicles ; 8(1): 1608786, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069027

RESUMO

Apoptosis is a form of programmed cell death that occurs throughout life as part of normal development as well as pathologic processes including chronic inflammation and infection. Although the death of a cell is often considered as the only biological outcome of a cell committed to apoptosis, it is becoming increasingly clear that the dying cell can actively communicate with other cells via soluble factors as well as membrane-bound extracellular vesicles (EVs) to regulate processes including cell clearance, immunity and tissue repair. Compared to EVs generated from viable cells such as exosomes and microvesicles, apoptotic cell-derived EVs (ApoEVs) are less well defined and the basic criteria for ApoEV characterization have not been established in the field. In this study, we will examine the current understanding of ApoEVs, in particular, the ApoEV subtype called apoptotic bodies (ApoBDs). We described that a subset of ApoBDs can be larger than 5 µm and smaller than 1 µm based on flow cytometry and live time-lapse microscopy analysis, respectively. We also described that a subset of ApoBDs can expose a relatively low level of phosphatidylserine on its surface based on annexin A5 staining. Furthermore, we characterized the presence of caspase-cleaved proteins (in particular plasma membrane-associated or cytoplasmic proteins) in samples enriched in ApoBDs. Lastly, using a combination of biochemical-, live imaging- and flow cytometry-based approaches, we characterized the progressive lysis of ApoBDs. Taken together, these results extended our understanding of ApoBDs.

10.
Phys Chem Chem Phys ; 21(21): 11142-11149, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31094379

RESUMO

The dissociation dynamics of CH3I is investigated on the red (269 nm) and blue (255 nm) side of the absorption maximum of the A-band. Using a multiphoton ionisation probe in a time-resolved photoelectron imaging experiment we observe very different dynamics at the two wavelengths, with significant differences in the measured lifetime and dynamic structure. The differences are explained in terms of changes in excitation cross-sections of the accessible 3Q0 and 1Q1 states and the subsequent dynamics upon each of them. The measurements support the existing literature on the rapid dissociation dynamics on the red side of the absorption maximum at 269 nm which is dominated by the dynamics along the 3Q0 state. At 255 nm we observe similar dynamics along the 3Q0 state but also a significant contribution from the 1Q1 state. The dynamics along the 1Q1 potential show a more complex structure in the photoelectron spectrum and a significantly increased lifetime, indicative of a more complex reaction pathway.

11.
J Phys Chem A ; 123(13): 2709-2718, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30848907

RESUMO

Phenolates and their substituted analogues are important molecular motifs in many biological molecules, including the family of fluorescent proteins based on green fluorescent protein. We have used a combination of anion photoelectron velocity-map imaging measurements and quantum chemistry calculations to probe the electronic structure of the phenolate anion and difluoro- and dimethoxy-substituted analogues. We report vertical detachment energies (VDEs) and quantify the photoelectron angular distributions. The VDEs for phenolate (2.26 ± 0.03 eV, 3.22 ± 0.02 eV) are in agreement with high-resolution measurements, whereas the values for the substituted analogues (2.61 ± 0.03 eV for difluorophenolate; ∼2.35 eV for dimethoxyphenolate) are new measurements. We also report adiabatic excitation energies (AEEs) of anion resonances and discuss their contributions to the overall photoelectron angular distributions. The AEE of the lowest lying resonance in phenolate (∼3.36 eV) is consistent with previous measurements, whereas the value for the next resonance (∼3.7 eV) is a new measurement. The AEEs of the resonances in the substituted analogues (∼3.74 eV for difluorophenolate; ∼3.4 and 3.74 eV for dimethoxyphenolate) are new measurements.

12.
Front Immunol ; 9: 2842, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564238

RESUMO

During the progression of necroptosis and pyroptosis, the plasma membrane will become permeabilized through the activation of mixed lineage kinase domain like pseudokinase (MLKL) or gasdermin D (GSDMD), respectively. Recently, the progression of apoptotic cells into secondary necrotic cells following membrane lysis was shown to be regulated by gasdermin E (GSDME, or DFNA5), a process dependent on caspase 3-mediated cleavage of GSDME. Notably, GSDME was also proposed to negatively regulate the disassembly of apoptotic cells into smaller membrane-bound vesicles known as apoptotic bodies (ApoBDs) by promoting earlier onset of membrane permeabilisation. The presence of a process downstream of caspase 3 that would actively drive cell lysis and limit cell disassembly during apoptosis is somewhat surprising as this could favor the release of proinflammatory intracellular contents and hinder efficient clearance of apoptotic materials. In contrast to the latter studies, we present here that GSDME is not involved in regulating secondary necrosis in human T cells and monocytes, and also unlikely in epithelial cells. Furthermore, GSDME is evidently not a negative regulator of apoptotic cell disassembly in our cell models. Thus, the function of GSDME in regulating membrane permeabilization and cell disassembly during apoptosis may be more limited.


Assuntos
Apoptose/fisiologia , Monócitos/metabolismo , Necrose/metabolismo , Receptores de Estrogênio/metabolismo , Células THP-1/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 3/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Humanos , Células Jurkat , Proteínas de Neoplasias/metabolismo , Piroptose/fisiologia , Linfócitos T/metabolismo
13.
J Phys Chem A ; 122(41): 8222-8228, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30234981

RESUMO

The photocycle of photoactive yellow protein (PYP) is initiated by a photoinduced trans-cis isomerization around a C═C bond in the chromophore that lies at the heart of the protein; however, in addition to the desired photochemical pathway, the chromophore can undergo competing electronic relaxation processes. Here we combine gas-phase anion photoelectron spectroscopy and quantum chemistry calculations to investigate how locking the C═C bond in the chromophore controls the competition between these electronic relaxation processes following photoexcitation in the range 400-310 nm. We find evidence to suggest that preventing trans-cis isomerization effectively turns off internal conversion to the ground electronic state and enhances electron emission from the first electronically excited state.


Assuntos
Proteínas de Bactérias/química , Processos Fotoquímicos , Fotorreceptores Microbianos/química , Isomerismo , Espectroscopia Fotoeletrônica , Raios Ultravioleta
14.
Phys Chem Chem Phys ; 20(22): 15543-15549, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29808860

RESUMO

Indole is an important molecular motif in many biological molecules and exists in its deprotonated anionic form in the cyan fluorescent protein, an analogue of green fluorescent protein. However, the electronic structure of the deprotonated indole anion has been relatively unexplored. Here, we use a combination of anion photoelectron velocity-map imaging measurements and quantum chemistry calculations to probe the electronic structure of the deprotonated indole anion. We report vertical detachment energies (VDEs) of 2.45 ± 0.05 eV and 3.20 ± 0.05 eV, respectively. The value for D0 is in agreement with recent high-resolution measurements whereas the value for D1 is a new measurement. We find that the first electronically excited singlet state of the anion, S1(ππ*), lies above the VDE and has shape resonance character with respect to the D0 detachment continuum and Feshbach resonance character with respect to the D1 continuum.

15.
Phys Chem Chem Phys ; 19(47): 31572-31580, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29165495

RESUMO

The photocycle of photoactive yellow protein (PYP) begins with small-scale torsional motions of the chromophore leading to large-scale movements of the protein scaffold triggering a biological response. The role of single-bond torsional molecular motions of the chromophore in the initial steps of the PYP photocycle are not fully understood. Here, we employ anion photoelectron spectroscopy measurements and quantum chemistry calculations to investigate the electronic relaxation dynamics following photoexcitation of four model chromophores, para-coumaric acid, its methyl ester, and two analogues with aliphatic bridges hindering torsional motions around the single bonds adjacent to the alkene group. Following direct photoexcitation of S1 at 400 nm, we find that both single bond rotations play a role in steering the PYP chromophore through the S1/S0 conical intersection but that rotation around the single bond between the alkene moiety and the phenoxide group is particularly important. Following photoexcitation of higher lying electronic states in the range 346-310 nm, we find that rotation around the single bond between the alkene and phenoxide groups also plays a key role in the electronic relaxation from higher lying states to the S1 state. These results have potential applications in tuning the photoresponse of photoactive proteins and materials with chromophores based on PYP.


Assuntos
Proteínas de Bactérias/química , Processos Fotoquímicos , Fotorreceptores Microbianos/química , Eletroquímica , Modelos Moleculares , Espectroscopia Fotoeletrônica , Rotação
16.
Chem Sci ; 8(9): 6141-6148, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989644

RESUMO

Light-driven molecular motors derived from chiral overcrowded alkenes are an important class of compounds in which sequential photochemical and thermal rearrangements result in unidirectional rotation of one part of the molecule with respect to another. Here, we employ anion photoelectron spectroscopy to probe the electronic structure and dynamics of a unidirectional molecular rotary motor anion in the gas-phase and quantum chemistry calculations to guide the interpretation of our results. We find that following photoexcitation of the first electronically excited state, the molecule rotates around its axle and some population remains on the excited potential energy surface and some population undergoes internal conversion back to the electronic ground state. These observations are similar to those observed in time-resolved measurements of rotary molecular motors in solution. This work demonstrates the potential of anion photoelectron spectroscopy for studying the electronic structure and dynamics of molecular motors in the gas-phase, provides important benchmarks for theory and improves our fundamental understanding of light-activated molecular rotary motors, which can be used to inform the design of new photoactivated nanoscale devices.

17.
Phys Chem Chem Phys ; 19(34): 22711-22720, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28820195

RESUMO

The electronic structure and excited-state dynamics of the ubiquitous bioluminescent probe luciferin and its furthest red-shifted analogue infraluciferin have been investigated using photoelectron spectroscopy and quantum chemistry calculations. In our electrospray ionization source, the deprotonated anions are formed predominantly in their phenolate forms and are directly relevant to studies of luciferin and infraluciferin as models for their unstable oxyluciferin and oxyinfraluciferin emitters. Following photoexcitation in the range 357-230 nm, we find that internal conversion from high-lying excited states to the S1(1ππ*) state competes efficiently with electron detachment. In infraluciferin, we find that decarboxylation also competes with direct electron detachment and internal conversion. This detailed spectroscopic and computational study defines the electronic structure and electronic relaxation processes of luciferin and infraluciferin and will inform the design of new bioluminescent systems and applications.

18.
Chem Sci ; 8(4): 3154-3163, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28507691

RESUMO

The Green Fluorescent Protein (GFP), which is widely used in bioimaging, is known to undergo light-induced redox transformations. Electron transfer is thought to occur resonantly through excited states of its chromophore; however, a detailed understanding of the electron gateway states of the chromophore is still missing. Here, we use photoelectron spectroscopy and high-level quantum chemistry calculations to show that following UV excitation, the ultrafast electron dynamics in the chromophore anion proceeds via an excited shape resonance strongly coupled to the open continuum. The impact of this state is found across the entire 355-315 nm excitation range, from above the first bound-bound transition to below the opening of higher-lying continua. By disentangling the electron dynamics in the photodetachment channels, we provide an important reference for the adiabatic position of the electron gateway state, which is located at 348 nm, and discover the source of the curiously large widths of the photoelectron spectra that have been reported in the literature. By introducing chemical modifications to the GFP chromophore, we show that the detachment threshold and the position of the gateway state, and hence the underlying excited-state dynamics, can be changed systematically. This enables a fine tuning of the intrinsic electron emission properties of the GFP chromophore and has significant implications for its function, suggesting that the biomimetic GFP chromophores are more stable to photooxidation.

19.
J Phys Chem Lett ; 8(4): 765-771, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28124921

RESUMO

Kaede, an analogue of green fluorescent protein (GFP), is a green-to-red photoconvertible fluorescent protein used as an in vivo "optical highlighter" in bioimaging. The fluorescence quantum yield of the red Kaede protein is lower than that of GFP, suggesting that increasing the conjugation modifies the electronic relaxation pathway. Using a combination of anion photoelectron spectroscopy and electronic structure calculations, we find that the isolated red Kaede protein chromophore in the gas phase is deprotonated at the imidazole ring, unlike the GFP chromophore that is deprotonated at the phenol ring. We find evidence of an efficient electronic relaxation pathway from higher-lying electronically excited states to the S1 state of the red Kaede chromophore that is not accessible in the GFP chromophore. Rapid autodetachment from high-lying vibrational states of S1 is found to compete efficiently with internal conversion to the ground electronic state.

20.
Chem Sci ; 8(2): 1621-1630, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29780449

RESUMO

Green fluorescent protein (GFP) continues to play an important role in the biological and biochemical sciences as an efficient fluorescent probe and is also known to undergo light-induced redox transformations. Here, we employ photoelectron spectroscopy and quantum chemistry calculations to investigate how the phenoxide moiety controls the competition between electron emission and internal conversion in the isolated GFP chromophore anion, following photoexcitation with ultraviolet light in the range 400-230 nm. We find that moving the phenoxide group from the para position to the ortho position enhances internal conversion back to the ground electronic state but that adding an additional OH group to the para chromophore, at the ortho position, impedes internal conversion. Guided by quantum chemistry calculations, we interpret these observations in terms of torsions around the C-C-C bridge being enhanced by electrostatic repulsions or impeded by the formation of a hydrogen-bonded seven-membered ring. We also find that moving the phenoxide group from the para position to the ortho position reduces the energy required for detachment processes, whereas adding an additional OH group to the para chromophore at the ortho position increases the energy required for detachment processes. These results have potential applications in tuning light-induced redox processes of this biologically and technologically important fluorescent protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA