Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2403555, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39279328

RESUMO

Aqueous rechargeable zinc-ion batteries (ZIBs) are increasingly recognized as promising energy storage systems for mini-grid and mini-off-grid applications due to their advantageous characteristics such as high safety, affordability, and considerable theoretical capacity. However, the long-term cycling performance of ZIBs is hampered by challenges including the uncontrolled dendrite formation, the passivation, and the occurrence of the hydrogen evolution reaction (HER) on the Zn anode. In this study, enhancing ZIB performance by implementing oxide material coatings on Zn metal, serving as a physical barrier at the electrode-electrolyte interfaces to mitigate dendrite growth and suppress the HER is concentrated. Specifically, the mechanisms through which the n-type semiconductor TiO2 coated Zn anode establishes ohmic contact with Zn, and the high-dielectric BaTiO3 (BTO) coated Zn anode fosters Maxwell-Wagner polarization with ferroelectric properties, significantly inhibiting dendrite growth and side reactions, thereby resulting in a highly stable Zn anode for efficient aqueous ZIBs is explored. This advanced BTO/Zn electrode demonstrates an extended lifespan of over 700 h compared to bare Zn and TiO2/Zn anodes. Additionally, full-cell aqueous ZIBs incorporating BTO/Zn//VO2 (B) batteries exhibit superior rate capabilities, high capacity, and sustained cycle life.

2.
Nano Lett ; 24(35): 11059-11066, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39186689

RESUMO

The downsizing of microscale energy storage devices is crucial for powering modern on-chip technologies by miniaturizing electronic components. Developing high-performance microscale energy devices, such as micro-supercapacitors, is essential through processing smart electrodes for on-chip structures. In this context, we introduce porous gold (Au) interdigitated electrodes (IDEs) as current collectors for micro-supercapacitors, using polyaniline as the active material. These porous Au IDE-based symmetric micro-supercapacitors (P-SMSCs) show a remarkable enhancement in charge storage performance, with a 187% increase in areal capacitance at 2.5 mA compared to conventional flat Au IDE-based devices, despite identical active material loading times. Our P-SMSCs achieve an areal capacitance of 60 mF/cm2, a peak areal energy density of 5.44 µWh/cm2, and an areal power of 2778 µW/cm2, surpassing most reported SMSCs. This study advances high-performance SMSCs by developing highly porous microscale planar current collectors, optimizing microelectrode use, and maximizing capacity within a compact footprint.

3.
Nano Lett ; 24(35): 10874-10882, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39163512

RESUMO

The downsizing of microscale energy storage devices plays a crucial role in powering modern emerging devices. Therefore, the scientific focus on developing high-performance microdevices, balancing energy density and power density, becomes essential. In this context, we explore an advanced Microplotter technique to fabricate hybrid planar Zn-ion microcapacitors (ZIMCs) that exhibit dual charge storage characteristics, with an electrical double layer capacitor type activated carbon anode and a battery type VO2 (B) cathode, aiming to achieve energy density surpassing supercapacitors and power density exceeding batteries. Effective loading of VO2 (B) cathode electrode materials combined with activated carbon anode onto confined planar microelectrodes not only provides reversible Zn2+ storage performance but also mitigates dendrite formation. This not only results in superior charge storage performance, including areal energies of 2.34 µWh/cm2 (at 74.76 µW/cm2) and 0.94 µWh/cm2 (at 753.12 µW/cm2), exceeding performance of zinc nanoparticle anode and activated carbon cathode based ZIMCs, but also ensures stable capacity retention of 87% even after 1000 cycles and free from any unwanted dendrites. Consequently, this approach is directed toward the development of high-performance ZIMCs by exploring high-capacity materials for efficient utilization on microelectrodes and achieving maximum possible capacities within the constraints of the limited device footprint.

4.
J Am Chem Soc ; 146(31): 21377-21388, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39046802

RESUMO

Aqueous zinc (Zn) iodine (I2) batteries have emerged as viable alternatives to conventional metal-ion batteries. However, undesirable Zn deposition and irreversible iodine conversion during cycling have impeded their progress. To overcome these concerns, we report a dynamical interface design by cation chemistry that improves the reversibility of Zn deposition and four-electron iodine conversion. Due to this design, we demonstrate an excellent Zn-plating/-stripping behavior in Zn||Cu asymmetric cells over 1000 cycles with an average Coulombic efficiency (CE) of 99.95%. Moreover, the Zn||I2 full cells achieve a high-rate capability (217.1 mA h g-1 at 40 A g-1; C rate of 189.5C) at room temperature and enable stable cycling with a CE of more than 99% at -50 °C at a current density of 0.05 A g-1. In situ spectroscopic investigations and simulations reveal that introducing tetraethylammonium cations as ion sieves can dynamically modulate the electrode-electrolyte interface environment, forming the unique water-deficient and chloride ion (Cl-)-rich interface. Such Janus interface accounts for the suppression of side reactions, the prevention of ICl decomposition, and the enrichment of reactants, enhancing the reversibility of Zn-stripping/-plating and four-electron iodine chemistry. This fundamental understanding of the intrinsic interplay between the electrode-electrolyte interface and cations offers a rational standpoint for tuning the reversibility of iodine conversion.

5.
Angew Chem Int Ed Engl ; 63(36): e202407038, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38871655

RESUMO

Reconstruction-engineered electrocatalysts with enriched high active Ni species for urea oxidation reaction (UOR) have recently become promising candidates for energy conversion. However, to inhibit the over-oxidation of urea brought by the high valence state of Ni, tremendous efforts are devoted to obtaining low-value products of nitrogen gas to avoid toxic nitrite formation, undesirably causing inefficient utilization of the nitrogen cycle. Herein, we proposed a mediation engineering strategy to significantly boost high-value nitrite formation to help close a loop for the employment of a nitrogen economy. Specifically, platinum-loaded nickel phosphides (Pt-Ni2P) catalysts exhibit a promising nitrite production rate (0.82 mol kWh-1 cm-2), high stability over 66 h of Zn-urea-air battery operation, and 135 h of co-production of nitrite and hydrogen under 200 mA cm-2 in a zero-gap membrane electrode assembly (MEA) system. The in situ spectroscopic characterizations and computational calculations demonstrated that the urea oxidation kinetics is facilitated by enriched dynamic Ni3+ active sites, thus augmenting the "cyanate" UOR pathway. The C-N cleavage was further verified as the rate-determining step for nitrite generation.

6.
Nano Lett ; 24(30): 9155-9162, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38917338

RESUMO

Herein, we introduce a photobiocidal surface activated by white light. The photobiocidal surface was produced through thermocompressing a mixture of titanium dioxide (TiO2), ultra-high-molecular-weight polyethylene (UHMWPE), and reduced graphene oxide (rGO) powders. A photobiocidal activity was not observed on UHMWPE-TiO2. However, UHMWPE-TiO2@rGO exhibited potent photobiocidal activity (>3-log reduction) against Staphylococcus epidermidis and Escherichia coli bacteria after a 12 h exposure to white light. The activity was even more potent against the phage phi 6 virus, a SARS-CoV-2 surrogate, with a >5-log reduction after 6 h exposure to white light. Our mechanistic studies showed that the UHMWPE-TiO2@rGO was activated only by UV light, which accounts for 0.31% of the light emitted by the white LED lamp, producing reactive oxygen species that are lethal to microbes. This indicates that adding rGO to UHMWPE-TiO2 triggered intense photobiocidal activity even at shallow UV flux levels.


Assuntos
Escherichia coli , Grafite , Luz , Polietilenos , Staphylococcus epidermidis , Titânio , Grafite/química , Grafite/farmacologia , Grafite/efeitos da radiação , Titânio/química , Titânio/farmacologia , Polietilenos/química , Polietilenos/efeitos da radiação , Polietilenos/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta
7.
Chempluschem ; 89(8): e202400073, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38591711

RESUMO

Aerosol-assisted chemical vapor deposition (AACVD) was used to deposit highly transparent and conductive titanium or fluorine-doped and titanium-fluorine co-doped ZnO thin films on glass substrate at 450 °C. All films were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), UV-Vis spectroscopy, scanning electron spectroscopy (SEM), and four-point probe. The films were 600-680 nm thick, crystalline, and highly transparent (80-87 %). The co-doped film consisted of 0.70 at % titanium and 1 at % fluorine, and displayed a charger carrier mobility, charge carrier concentration, and a minimum resistivity of 8.4 cm2 V-1 s-1, 3.97×1020 cm-3, and 1.69×10-3â€…Ω cm, respectively. A band gap of 3.6 eV was observed for the co-doped film. Compared to the undoped and singly doped films, the co-doped film displayed a notably higher structure morphology (more homogenous grains with well-defined boundaries) suitable for transparent conducting oxide applications.

8.
Nano Lett ; 24(10): 3036-3043, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38415595

RESUMO

Zinc-iodine batteries (ZIBs) are promising candidates for ecofriendly, safe, and low-cost energy storage systems, but polyiodide shuttling and the complex cathode fabrication procedures have severely hindered their broader commercial usage. Herein, a protocol is developed using phospholipid-like oleylamine molecules for scalable production of Langmuir-Blodgett films, which allows the facile preparation of ZIB cathodes in less than 1 min. The resulting inhomogeneous cathode allows for the continuous conversion of iodine. Moreover, the amine group of the oleylamine molecule at the cathode is capable of producing [OA*I+]I3- charge-transfer complexes with iodine, which facilitates the rapid migration of iodine and results in a highly reversible iodine conversion process. Consequently, the as-prepared ZIBs can deliver over 2000 cycles at 0.5 mA cm-2 with a capacity retention of 75.3%. This work presents a novel, straightforward, and efficient method for the rapid construction of ZIBs.

9.
ACS Omega ; 9(6): 7154-7162, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371809

RESUMO

Superhydrophobic surfaces have been studied extensively over the past 25 years. However, many industries interested in the application of hydrophobic properties are yet to find a suitable solution to their needs. This paper looks at the rapid functionalization of nanoparticles and the fabrication of superhydrophobic surfaces with contact angles > 170°. This was achieved by simply mixing commercial products and applying the new formulation with scalable techniques. First, inexpensive and nontoxic superhydrophobic nanoparticles were made by functionalizing nanoparticles with fatty acids in under an hour. A similar methodology was then used to functionalize a commercial polymer coating to express superhydrophobic properties on it by lowering the coating's surface energy. The coating was then applied to a surface by the spray technique to allow for the formation of hierarchical surface structures. By combining the low surface energy with the necessary roughness, the surface was able to express superhydrophobic properties. Both the particles and the surfaces then underwent characterization and functional testing, which, among other things, allowed for clear differentiation between the functionalization properties of the zinc oxide (ZnO) and the silica (SiO2) nanoparticles. This paper shows that suitable superhydrophobic solutions may be found by simple additions to already optimized commercial products.

10.
Adv Mater ; 36(14): e2310645, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38226766

RESUMO

Aqueous zinc-ion batteries (AZIBs) have experienced a rapid surge in popularity, as evident from the extensive research with over 30 000 articles published in the past 5 years. Previous studies on AZIBs have showcased impressive long-cycle stability at high current densities, achieving thousands or tens of thousands of cycles. However, the practical stability of AZIBs at low current densities (<1C) is restricted to merely 50-100 cycles due to intensified cathode dissolution. This genuine limitation poses a considerable challenge to their transition from the laboratory to the industry. In this study, leveraging density functional theory (DFT) calculations, an artificial interphase that achieves both hydrophobicity and restriction of the outward penetration of dissolved vanadium cations, thereby shifting the reaction equilibrium and suppressing the vanadium dissolution following Le Chatelier's principle, is described. The approach has resulted in one of the best cycling stabilities to date, with no noticeable capacity fading after more than 200 cycles (≈720 h) at 200 mA g-1 (0.47C). These findings represent a significant advance in the design of ultrastable cathodes for aqueous batteries and accelerate the industrialization of aqueous zinc-ion batteries.

11.
Small ; 20(14): e2308869, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37988637

RESUMO

Solar power represents an abundant and readily available source of renewable energy. However, its intermittent nature necessitates external energy storage solutions, which can often be expensive, bulky, and associated with energy conversion losses. This study introduces the concept of a photo-accelerated battery that seamlessly integrates energy harvesting and storage functions within a single device. In this research, a novel approach for crafting photocathodes is presented using hydrogenated vanadium pentoxide (H:V2O5) nanofibers. This method enhances optical activity, electronic conductivity, and ion diffusion rates within photo-accelerated Li-ion batteries. This study findings reveal that H:V2O5 exhibits notable improvements in specific capacity under both dark and illuminated conditions. Furthermore, it demonstrates enhanced diffusion kinetics and charge storage performance when exposed to light, as compared to pristine counterparts. This strategy of defect engineering holds great promise for the development of high-performance photocathodes in future energy storage applications.

12.
Small ; : e2306827, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054756

RESUMO

Zinc metal is a promising candidate for anodes in zinc-ion batteries (ZIBs), but its widespread implementation is hindered by dendrite growth in aqueous electrolytes. Dendrites lead to undesirable side reactions, such as hydrogen evolution, passivation, and corrosion, causing reduced capacity during prolonged cycling. In this study, an approach is explored to address this challenge by directly growing 1D zinc oxide (ZnO) nanorods (NRs) and 2D ZnO nanoflakes (NFs) on Zn anodes, forming artificial layers to enhance ZIB performance. The incorporation of ZnO on the anode offers both chemical and thermal stability and leverages its n-type semiconductor nature to facilitate the formation of ohmic contacts. This results in efficient electron transport during Zn ion plating and stripping processes. Consequently, the ZnO NFs-coated Zn anodes demonstrate significantly improved charge storage performance, achieving 348 mAh g-1 , as compared to ZnO NRs (250 mAh g-1 ) and pristine Zn (160 mAh g-1 ) anodes when evaluated in full cells with V2 O5 cathodes. One significant advantage of ZnO NFs lies in their highly polar surfaces, promoting strong interactions with water molecules and rendering them exceptionally hydrophilic. This characteristic enhances the ability of ZnO NFs to desolvate Zn2+ ions, leading to improved charge storage performance.

13.
Chem Commun (Camb) ; 59(93): 13891-13894, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37934411

RESUMO

Herein, ammonium fluoride is reported as an additive within 1 M ZnSO4 aqueous electrolyte to improve zinc anodes. The as-formed electrostatic shielding layer and ZnF2-rich solid-state interphase layer can jointly inhibit side reactions and dendrite growth. Consequently, symmetric Zn‖Zn cells, asymmetric Zn‖Cu cells and Zn‖MnO2 cells with the additives present dramatically enhanced performance in comparison to the ones with pure ZnSO4 electrolyte counterparts. This work proposes a facile but effective method to achieve highly reversible zinc anodes.

14.
Chem Commun (Camb) ; 59(79): 11871-11874, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37723944

RESUMO

The high-density amorphous phases (HDAs) of bimetallic zeolitic imidazolate frameworks (Zn/Co-ZIF-4) were prepared. The temperature dependence of the isobaric heat capacity (Cp) of ZIF-4 HDAs was measured to determine the glass transition temperature (Tg) of HDAs. The Tg non-linearly decreases with the molar ratio R, where R is Co/(Co + Zn), indicating the presence of a mixed-metal node effect. This effect arises from the non-linear increase of the degree of configurational freedom in the HDA as R increases. The degree of configurational freedom is inversely correlated with the network connectivity, which is, in turn, affected by variations in the MN4 (M: Zn or Co; N: nitrogen) tetrahedral symmetry in the ZIF-4 HDA. Overall, this work offers valuable insights into the glass transition of metal-organic frameworks.

15.
Philos Trans A Math Phys Eng Sci ; 381(2259): 20220343, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37691466

RESUMO

Photo-induced enhanced Raman spectroscopy (PIERS) has emerged as a highly sensitive surface-enhanced Raman spectroscopy (SERS) technique for the detection of ultra-low concentrations of organic molecules. The PIERS mechanism has been largely attributed to UV-induced formation of surface oxygen vacancies (Vo) in semiconductor materials, although alternative interpretations have been suggested. Very recently, PIERS has been proposed as a surface probe for photocatalytic materials, following Vo formation and healing kinetics. This work establishes comparison between PIERS and Vo-induced SERS approaches in defected noble-metal-free titanium dioxide (TiO2-x) films to further confirm the role of Vo in PIERS. Upon application of three post-treatment methods (namely UV-induction, vacuum annealing and argon etching), correlation of Vo kinetics and distribution could be established. A proposed mechanism and further discussion on PIERS as a probe to explore photocatalytic materials are also presented. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.

16.
Chem Sci ; 14(32): 8662-8671, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37592989

RESUMO

High-voltage cathodes with high power and stable cyclability are needed for high-performance sodium-ion batteries. However, the low kinetics and inferior capacity retention from structural instability impede the development of Mn-rich phosphate cathodes. Here, we propose light-weight fluorine (F) doping strategy to decrease the energy gap to 0.22 eV from 1.52 eV and trigger a "Mn-locking" effect-to strengthen the adjacent chemical bonding around Mn as confirmed by density functional theory calculations, which ensure the optimized Mn ligand framework, suppressed Mn dissolution, improved structural stability and enhanced electronic conductivity. The combination of in situ and ex situ techniques determine that the F dopant has no influence on the Na+ storage mechanisms. As a result, an outstanding rate performance up to 40C and an improved cycling stability (1000 cycles at 20C) are achieved. This work presents an effective and widely available light-weight anion doping strategy for high-performance polyanionic cathodes.

17.
Angew Chem Int Ed Engl ; 62(41): e202311268, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37615518

RESUMO

For zinc-ion batteries (ZIBs), the non-uniform Zn plating/stripping results in a high polarization and low Coulombic efficiency (CE), hindering the large-scale application of ZIBs. Here, inspired by biomass seaweed plants, an anionic polyelectrolyte alginate acid (SA) was used to initiate the in situ formation of the high-performance solid electrolyte interphase (SEI) layer on the Zn anode. Attribute to the anionic groups of -COO- , the affinity of Zn2+ ions to alginate acid induces a well-aligned accelerating channel for uniform plating. This SEI regulates the desolvation structure of Zn2+ and facilitates the formation of compact Zn (002) crystal planes. Even under high depth of discharge conditions (DOD), the SA-coated Zn anode still maintains a stable Zn stripping/plating behavior with a low potential difference (0.114 V). According to the classical nucleation theory, the nucleation energy for SA-coated Zn is 97 % less than that of bare Zn, resulting in a faster nucleation rate. The Zn||Cu cell assembled with the SA-coated electrode exhibits an outstanding average CE of 99.8 % over 1,400 cycles. The design is successfully demonstrated in pouch cells, where the SA-coated Zn exhibits capacity retention of 96.9 % compared to 59.1 % for bare Zn anode, even under the high cathode mass loading (>10 mg/cm2 ).

18.
ACS Appl Mater Interfaces ; 15(33): 39956-39965, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37552034

RESUMO

Quantifying the crystallographic phases present at a surface is an important challenge in fields such as functional materials and surface science. X-ray photoelectron spectroscopy (XPS) is routinely employed in surface characterization to identify and quantify chemical species through core line analysis. Valence band (VB) spectra contain characteristic but complex features that provide information on the electronic density of states (DoS) and thus can be understood theoretically using density functional theory (DFT). Here, we present a method of fitting experimental photoemission spectra with DFT models for quantitative analysis of heterogeneous systems, specifically mapping the anatase to rutile ratio across the surface of mixed-phase TiO2 thin films. The results were correlated with mapped photocatalytic activity measured using a resazurin-based smart ink. This method allows large-scale functional and surface composition mapping in heterogeneous systems and demonstrates the unique insights gained from DFT-simulated spectra on the electronic structure origins of complex VB spectral features.

19.
Phys Chem Chem Phys ; 25(29): 20134-20144, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37463042

RESUMO

Noble metal nanoparticles are widely used as co-catalysts for storing and separating electrons in semiconductor photocatalysis. Thus, evaluating this ability is important and meaningful to understand the photocatalytic mechanism. Employing Ag nanoparticles, the present study combined in situ photoconductance and theoretical analysis to evaluate the Fermi-level (EF) shift in a UV-illuminated Ag/TiO2 system under gaseous conditions. Based on this, the role of the Ag nanoparticles in storing and separating electrons was discussed. It was found that the EF of Ag/TiO2 is located deeper in the gap and a variation in temperature has less effect on the EF of Ag/TiO2 compared to the undecorated TiO2. The analysis showed that ∼46 electrons can be stored in 10 nm Ag nanoparticles under our experimental conditions, which does not change with temperature. The electron traps in TiO2 can affect the electron distribution in the TiO2 and Ag nanoparticles. It was observed that the localized surface plasmon resonance (LSPR) of the Ag nanoparticles exhibited a blue-shift under UV light illumination, which is generally ascribed to the electron storage in the Ag nanoparticles. However, we showed that the blue-shift is not related to the electron storage in the Ag nanoparticles, and thus it cannot be used as an indicator for evaluating their electron-storage ability. The in situ XPS analysis also does not support that the LSPR blue shift is associated with the reduction in the Ag2O layer and TiO2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA