Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Bioeng Biotechnol ; 10: 854358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032727

RESUMO

Traumatic brain injury (TBI) is a highly complex phenomenon involving a cascade of disruptions across biomechanical, neurochemical, neurological, cognitive, emotional, and social systems. Researchers and clinicians urgently need a rigorous conceptualization of brain injury that encompasses nonlinear and mutually causal relations among the factors involved, as well as sources of individual variation in recovery trajectories. System dynamics, an approach from systems science, has been used for decades in fields such as management and ecology to model nonlinear feedback dynamics in complex systems. In this mini-review, we summarize some recent uses of this approach to better understand acute injury mechanisms, recovery dynamics, and care delivery for TBI. We conclude that diagram-based approaches like causal-loop diagramming have the potential to support the development of a shared paradigm of TBI that incorporates social support aspects of recovery. When developed using adequate data from large-scale studies, simulation modeling presents opportunities for improving individualized treatment and care delivery.

2.
Front Neurol ; 9: 203, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29670568

RESUMO

Despite increasing public awareness and a growing body of literature on the subject of concussion, or mild traumatic brain injury, an urgent need still exists for reliable diagnostic measures, clinical care guidelines, and effective treatments for the condition. Complexity and heterogeneity complicate research efforts and indicate the need for innovative approaches to synthesize current knowledge in order to improve clinical outcomes. Methods from the interdisciplinary field of systems science, including models of complex systems, have been increasingly applied to biomedical applications and show promise for generating insight for traumatic brain injury. The current study uses causal-loop diagramming to visualize relationships between factors influencing the pathophysiology and recovery trajectories of concussive injury, including persistence of symptoms and deficits. The primary output is a series of preliminary systems maps detailing feedback loops, intrinsic dynamics, exogenous drivers, and hubs across several scales, from micro-level cellular processes to social influences. Key system features, such as the role of specific restorative feedback processes and cross-scale connections, are examined and discussed in the context of recovery trajectories. This systems approach integrates research findings across disciplines and allows components to be considered in relation to larger system influences, which enables the identification of research gaps, supports classification efforts, and provides a framework for interdisciplinary collaboration and communication-all strides that would benefit diagnosis, prognosis, and treatment in the clinic.

3.
Front Neurol ; 8: 513, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033888

RESUMO

Traumatic brain injury (TBI) has been called "the most complicated disease of the most complex organ of the body" and is an increasingly high-profile public health issue. Many patients report long-term impairments following even "mild" injuries, but reliable criteria for diagnosis and prognosis are lacking. Every clinical trial for TBI treatment to date has failed to demonstrate reliable and safe improvement in outcomes, and the existing body of literature is insufficient to support the creation of a new classification system. Concussion, or mild TBI, is a highly heterogeneous phenomenon, and numerous factors interact dynamically to influence an individual's recovery trajectory. Many of the obstacles faced in research and clinical practice related to TBI and concussion, including observed heterogeneity, arguably stem from the complexity of the condition itself. To improve understanding of this complexity, we review the current state of research through the lens provided by the interdisciplinary field of systems science, which has been increasingly applied to biomedical issues. The review was conducted iteratively, through multiple phases of literature review, expert interviews, and systems diagramming and represents the first phase in an effort to develop systems models of concussion. The primary focus of this work was to examine concepts and ways of thinking about concussion that currently impede research design and block advancements in care of TBI. Results are presented in the form of a multi-scale conceptual framework intended to synthesize knowledge across disciplines, improve research design, and provide a broader, multi-scale model for understanding concussion pathophysiology, classification, and treatment.

4.
BMC Res Notes ; 7: 739, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25331931

RESUMO

BACKGROUND: The nucleus accumbens (NAc) has a well established role in reward processing. Yet, there is growing evidence showing that NAc function, and its connections to other parts of the brain, is also critically involved in the emergence of chronic back pain (CBP). Pain patients are known to perform abnormally in reward-related tasks, which suggests an intriguing link between pain, NAc connectivity, and reward behavior. In the present study, we compared performance on a gambling task (indicating willingness to risk losing money) between healthy pain-free controls (CON) and individuals with CBP. We then measured modular connectivity of each participants' NAc with resting state functional MRI to investigate how connectivity accounts for reward behavior in the presence and absence of pain. RESULTS: We found gain sensitivity was significantly higher in CBP patients. These scores were significantly correlated to connectivity within the NAc module defined by CON subjects ( which had strong connections to the frontal cortex), but not within that defined by CBP patients ( which was more strongly connected to subcortical areas). An important part of our study was based on the precedence that a range of behaviors, from simple to complex, can be predicted from brain activity during rest. Thus, to corroborate our results we compared them closely to an independent study correlating the same connectivity metric to impulsive behaviors in healthy participants. We found that our CBP patients were highly similarin connectivity to this study's highly-impulsive healthy subjects, strengthening the notion that there is an important link between the brain systems that support chronic pain and reward processing. CONCLUSIONS: Our results support previous findings that chronic back pain is accompanied by altered connectivity of the NAc. This lends itself to riskier behavior in these patients, a finding which establishes a potential cognitive consequence or co-morbidity of long-term pain and provides a behavioral link to growing research showing that chronic pain is related to abnormal changes in the dopaminergic system.


Assuntos
Dor nas Costas/fisiopatologia , Dor Crônica/fisiopatologia , Rede Nervosa/fisiopatologia , Núcleo Accumbens/fisiopatologia , Recompensa , Assunção de Riscos , Adulto , Estudos de Casos e Controles , Tomada de Decisões , Feminino , Humanos , Comportamento Impulsivo/fisiologia , Masculino , Pessoa de Meia-Idade , Análise e Desempenho de Tarefas
5.
Mol Pain ; 8: 29, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22531485

RESUMO

BACKGROUND: The 5% Lidocaine patch is used for treating chronic neuropathic pain conditions such as chronic back pain (CBP), diabetic neuropathy and complex regional pain syndrome, but is effective in a variable proportion of patients. Our lab has reported that this treatment reduces CBP intensity and associated brain activations when tested in an open labelled preliminary study. Notably, effectiveness of the 5% Lidocaine patch has not been tested against placebo for treating CBP. In this study, effectiveness of the 5% Lidocaine patch was compared with placebo in 30 CBP patients in a randomised double-blind study where 15 patients received 5% Lidocaine patches and the remaining patients received placebo patches. Functional MRI was used to identify brain activity for fluctuations of spontaneous pain, at baseline and at two time points after start of treatment (6 hours and 2 weeks). RESULTS: There was no significant difference between the treatment groups in either pain intensity, sensory and affective qualities of pain or in pain related brain activation at any time point. However, 50% patients in both the Lidocaine and placebo arms reported a greater than 50% decrease in pain suggesting a marked placebo effect. When tested against an untreated CBP group at similar time points, the patch treated subjects showed significantly greater decrease in pain compared to the untreated group (n = 15). CONCLUSIONS: These findings suggest that although the 5% Lidocaine is not better than placebo in its effectiveness for treating pain, the patch itself induces a potent placebo effect in a significant proportion of CBP patients.


Assuntos
Dor nas Costas/tratamento farmacológico , Encéfalo/fisiopatologia , Dor Crônica/tratamento farmacológico , Lidocaína/uso terapêutico , Imageamento por Ressonância Magnética , Neuroimagem , Adesivo Transdérmico , Dor nas Costas/fisiopatologia , Mapeamento Encefálico , Dor Crônica/fisiopatologia , Método Duplo-Cego , Feminino , Humanos , Lidocaína/administração & dosagem , Masculino , Pessoa de Meia-Idade , Efeito Placebo
6.
J Urol ; 186(1): 117-24, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21571326

RESUMO

PURPOSE: Research into the pathophysiology of chronic prostatitis/chronic pelvic pain syndrome has primarily focused on markers of peripheral dysfunction. We present the first neuroimaging investigation to our knowledge to characterize brain function and anatomy in chronic prostatitis/chronic pelvic pain syndrome. MATERIALS AND METHODS: We collected data from 19 male patients with chronic prostatitis/chronic pelvic pain syndrome, and 16 healthy age and gender matched controls. Functional magnetic resonance imaging data were obtained from 14 patients with chronic prostatitis/chronic pelvic pain syndrome as they rated spontaneous pain inside the scanner. Group differences (16 patients per group) in gray matter total volume and regional density were evaluated using voxel-based morphometry, and white matter integrity was studied with diffusion tensor imaging to measure fractional anisotropy. Functional and anatomical imaging outcomes were correlated with the clinical characteristics of chronic prostatitis/chronic pelvic pain syndrome. RESULTS: Spontaneous pelvic pain was uniquely characterized by functional activation within the right anterior insula, which correlated with clinical pain intensity. No group differences were found in regional gray matter volume, yet density of gray matter in pain relevant regions (anterior insula and anterior cingulate cortices) positively correlated with pain intensity and extent of pain chronicity. Moreover the correlation between white matter anisotropy and neocortical gray matter volume was disrupted in chronic prostatitis/chronic pelvic pain syndrome. CONCLUSIONS: We provide novel evidence that the pain of chronic prostatitis/chronic pelvic pain syndrome is associated with a chronic pelvic pain syndrome specific pattern of functional brain activation and brain anatomical reorganization. These findings necessitate further investigations into the role of central mechanisms in the initiation and maintenance of chronic prostatitis/chronic pelvic pain syndrome.


Assuntos
Encéfalo/patologia , Encéfalo/fisiopatologia , Imageamento por Ressonância Magnética , Adulto , Mapeamento Encefálico , Humanos , Masculino , Prostatite
7.
Eur J Pain ; 15(8): 843.e1-14, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21315627

RESUMO

Chronic pain is a hallmark of osteoarthritis (OA), yet little is known about its properties and representation in the brain. Here we use fMRI combined with psychophysics to study knee pain in fourteen OA patients and nine healthy controls. Mechanical painful pressure stimuli were applied to the knee in both groups and ratings of evoked pain and related brain activity examined. We observe that psychophysical properties and brain activation patterns of evoked pain are essentially the same between OA patients and healthy subjects, and between worse and better OA knees. In OA patients, stimulus-related brain activity could be distinguished from brain activity associated with spontaneous pain. The former activated brain regions commonly observed for acute painful stimuli in healthy subjects, while the spontaneous pain of OA engaged prefrontal-limbic regions closely corresponding to areas observed for spontaneous pain in other chronic pain conditions, such as chronic back pain and post-herpetic neuralgia. Arthritis-related clinical characteristics of knee OA also mapped to prefrontal-limbic regions. In a subgroup of patients (n=6) we examined brain activity changes for a 2-week, repeat measure, cyclooxygenase-2 inhibitor (valdecoxib) therapy. Treatment decreased spontaneous pain for the worse knee and clinical characteristics of OA, and increased blood and csf levels of the drug which correlated positively with prefrontal-limbic brain activity. These findings indicate dissociation between mechanically induced and spontaneous OA knee pain, the latter engaging brain regions involved in emotional assessment of the self, and challenge the standard clinical view regarding the nature of OA pain.


Assuntos
Artralgia/diagnóstico , Artralgia/etiologia , Encefalopatias/diagnóstico , Encefalopatias/etiologia , Osteoartrite do Joelho/complicações , Osteoartrite do Joelho/diagnóstico , Adulto , Artralgia/fisiopatologia , Encefalopatias/fisiopatologia , Mapeamento Encefálico/métodos , Doença Crônica , Diagnóstico Diferencial , Potenciais Evocados/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/fisiopatologia , Medição da Dor/métodos , Estimulação Física
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA