Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 221(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38517332

RESUMO

Heterozygous mutations in the TBK1 gene can cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The majority of TBK1-ALS/FTD patients carry deleterious loss-of-expression mutations, and it is still unclear which TBK1 function leads to neurodegeneration. We investigated the impact of the pathogenic TBK1 missense variant p.E696K, which does not abolish protein expression, but leads to a selective loss of TBK1 binding to the autophagy adaptor protein and TBK1 substrate optineurin. Using organelle-specific proteomics, we found that in a knock-in mouse model and human iPSC-derived motor neurons, the p.E696K mutation causes presymptomatic onset of autophagolysosomal dysfunction in neurons precipitating the accumulation of damaged lysosomes. This is followed by a progressive, age-dependent motor neuron disease. Contrary to the phenotype of mice with full Tbk1 knock-out, RIPK/TNF-α-dependent hepatic, neuronal necroptosis, and overt autoinflammation were not detected. Our in vivo results indicate autophagolysosomal dysfunction as a trigger for neurodegeneration and a promising therapeutic target in TBK1-ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Neurônios Motores/patologia , Mutação , Doenças Neuroinflamatórias , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
2.
Commun Biol ; 6(1): 1146, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950046

RESUMO

Here we present a deep learning-based image analysis platform (DLAP), tailored to autonomously quantify cell numbers, and fluorescence signals within cellular compartments, derived from RNAscope or immunohistochemistry. We utilised DLAP to analyse subtypes of tyrosine hydroxylase (TH)-positive dopaminergic midbrain neurons in mouse and human brain-sections. These neurons modulate complex behaviour, and are differentially affected in Parkinson's and other diseases. DLAP allows the analysis of large cell numbers, and facilitates the identification of small cellular subpopulations. Using DLAP, we identified a small subpopulation of TH-positive neurons (~5%), mainly located in the very lateral Substantia nigra (SN), that was immunofluorescence-negative for the plasmalemmal dopamine transporter (DAT), with ~40% smaller cell bodies. These neurons were negative for aldehyde dehydrogenase 1A1, with a lower co-expression rate for dopamine-D2-autoreceptors, but a ~7-fold higher likelihood of calbindin-d28k co-expression (~70%). These results have important implications, as DAT is crucial for dopamine signalling, and is commonly used as a marker for dopaminergic SN neurons.


Assuntos
Aprendizado Profundo , Proteínas da Membrana Plasmática de Transporte de Dopamina , Animais , Humanos , Camundongos , Dopamina , Neurônios Dopaminérgicos , Substância Negra
3.
EMBO J ; 42(19): e112507, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37609797

RESUMO

Queuosine (Q) is a modified nucleoside at the wobble position of specific tRNAs. In mammals, queuosinylation is facilitated by queuine uptake from the gut microbiota and is introduced into tRNA by the QTRT1-QTRT2 enzyme complex. By establishing a Qtrt1 knockout mouse model, we discovered that the loss of Q-tRNA leads to learning and memory deficits. Ribo-Seq analysis in the hippocampus of Qtrt1-deficient mice revealed not only stalling of ribosomes on Q-decoded codons, but also a global imbalance in translation elongation speed between codons that engage in weak and strong interactions with their cognate anticodons. While Q-dependent molecular and behavioral phenotypes were identified in both sexes, female mice were affected more severely than males. Proteomics analysis confirmed deregulation of synaptogenesis and neuronal morphology. Together, our findings provide a link between tRNA modification and brain functions and reveal an unexpected role of protein synthesis in sex-dependent cognitive performance.


Assuntos
Nucleosídeo Q , RNA de Transferência , Feminino , Camundongos , Animais , Nucleosídeo Q/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Anticódon , Biossíntese de Proteínas , Códon , Mamíferos/genética
4.
Mol Ther ; 31(1): 282-299, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36116006

RESUMO

Huntington's disease (HD) is a fatal neurodegenerative disorder with no effective cure currently available. Over the past few years our research has shown that alterations in sphingolipid metabolism represent a critical determinant in HD pathogenesis. In particular, aberrant metabolism of sphingosine-1-phosphate (S1P) has been reported in multiple disease settings, including human postmortem brains from HD patients. In this study, we investigate the potential therapeutic effect of the inhibition of S1P degradative enzyme SGPL1, by the chronic administration of the 2-acetyl-5-tetrahydroxybutyl imidazole (THI) inhibitor. We show that THI mitigated motor dysfunctions in both mouse and fly models of HD. The compound evoked the activation of pro-survival pathways, normalized levels of brain-derived neurotrophic factor, preserved white matter integrity, and stimulated synaptic functions in HD mice. Metabolically, THI restored normal levels of hexosylceramides and stimulated the autophagic and lysosomal machinery, facilitating the reduction of nuclear inclusions of both wild-type and mutant huntingtin proteins.


Assuntos
Doença de Huntington , Camundongos , Humanos , Animais , Doença de Huntington/tratamento farmacológico , Modelos Teóricos , Imidazóis/farmacologia , Glicoesfingolipídeos , Modelos Animais de Doenças , Proteína Huntingtina/genética
5.
EMBO Rep ; 23(8): e54234, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35735139

RESUMO

Mutations in the human kinesin family member 5A (KIF5A) gene were recently identified as a genetic cause of amyotrophic lateral sclerosis (ALS). Several KIF5A ALS variants cause exon 27 skipping and are predicted to produce motor proteins with an altered C-terminal tail (referred to as ΔExon27). However, the underlying pathogenic mechanism is still unknown. Here, we confirm the expression of KIF5A mutant proteins in patient iPSC-derived motor neurons. We perform a comprehensive analysis of ΔExon27 at the single-molecule, cellular, and organism levels. Our results show that ΔExon27 is prone to form cytoplasmic aggregates and is neurotoxic. The mutation relieves motor autoinhibition and increases motor self-association, leading to drastically enhanced processivity on microtubules. Finally, ectopic expression of ΔExon27 in Drosophila melanogaster causes wing defects, motor impairment, paralysis, and premature death. Our results suggest gain-of-function as an underlying disease mechanism in KIF5A-associated ALS.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , DNA Antissenso/genética , Drosophila melanogaster , Mutação com Ganho de Função , Humanos , Cinesinas/genética , Neurônios Motores/metabolismo , Mutação , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo
6.
Antioxidants (Basel) ; 11(3)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35326154

RESUMO

Oxidative stress is typically reported in neurodegenerative diseases [...].

7.
Neurochem Int ; 155: 105302, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35150790

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor deficits caused by the loss of dopaminergic neurons in the substantia nigra (SN) and ventral tegmental area (VTA). However, clinical data revealed that not only the dopaminergic system is affected in PD. Postmortem studies showed degeneration of noradrenergic cells in the locus coeruleus (LC) to an even greater extent than that observed in the SN/VTA. Pharmacological models support the concept that modification of noradrenergic transmission can influence the PD-like phenotype induced by neurotoxins. Nevertheless, there are no existing data on animal models regarding the distant impact of noradrenergic degeneration on intact SN/VTA neurons. The aim of this study was to create a transgenic mouse model with endogenously evoked progressive degeneration restricted to noradrenergic neurons and investigate its long-term impact on the dopaminergic system. To this end, we selectively ablated the transcription initiation factor-IA (TIF-IA) in neurons expressing dopamine ß-hydroxylase (DBH) by the Cre-loxP system. This mutation mimics a condition of nucleolar stress affecting neuronal survival. TIF-IADbhCre mice were characterized by selective, progressive degeneration of noradrenergic neurons, followed by phenotypic alterations associated with sympathetic system impairment. Our studies did not show any loss of tyrosine hydroxylase (TH)-positive cells in the SN/VTA of mutant mice; however, we observed increased indices of oxidative stress, enhanced markers of glial cell activation, inflammatory processes and isolated degenerating cells positive for FluoroJade C. These results were supported by gene expression profiling of VTA and SN from TIF-IADbhCre mice, revealing that 34 out of 246 significantly regulated genes in the SN/VTA were related to PD. Overall, our results shed new light on the possible negative influence of noradrenergic degeneration on dopaminergic neurons, reinforcing the neuroprotective role of noradrenaline.


Assuntos
Mesencéfalo , Substância Negra , Animais , Neurônios Dopaminérgicos/metabolismo , Inflamação/metabolismo , Camundongos , Norepinefrina/metabolismo , Estresse Oxidativo , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/metabolismo
8.
Cell Death Dis ; 12(12): 1139, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880223

RESUMO

Transcriptional and cellular-stress surveillance deficits are hallmarks of Huntington's disease (HD), a fatal autosomal-dominant neurodegenerative disorder caused by a pathological expansion of CAG repeats in the Huntingtin (HTT) gene. The nucleolus, a dynamic nuclear biomolecular condensate and the site of ribosomal RNA (rRNA) transcription, is implicated in the cellular stress response and in protein quality control. While the exact pathomechanisms of HD are still unclear, the impact of nucleolar dysfunction on HD pathophysiology in vivo remains elusive. Here we identified aberrant maturation of rRNA and decreased translational rate in association with human mutant Huntingtin (mHTT) expression. The protein nucleophosmin 1 (NPM1), important for nucleolar integrity and rRNA maturation, loses its prominent nucleolar localization. Genetic disruption of nucleolar integrity in vulnerable striatal neurons of the R6/2 HD mouse model decreases the distribution of mHTT in a disperse state in the nucleus, exacerbating motor deficits. We confirmed NPM1 delocalization in the gradually progressing zQ175 knock-in HD mouse model: in the striatum at a presymptomatic stage and in the skeletal muscle at an early symptomatic stage. In Huntington's patient skeletal muscle biopsies, we found a selective redistribution of NPM1, similar to that in the zQ175 model. Taken together, our study demonstrates that nucleolar integrity regulates the formation of mHTT inclusions in vivo, and identifies NPM1 as a novel, readily detectable peripheral histopathological marker of HD progression.


Assuntos
Doença de Huntington , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Camundongos , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
9.
Antioxidants (Basel) ; 10(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34439532

RESUMO

Primary cilia (PC) are microtubule-based protrusions of the cell membrane transducing molecular signals during brain development. Here, we report that PC are required for maintenance of Substantia nigra (SN) dopaminergic (DA) neurons highly vulnerable in Parkinson's disease (PD). Targeted blockage of ciliogenesis in differentiated DA neurons impaired striato-nigral integrity in adult mice. The relative number of SN DA neurons displaying a typical auto-inhibition of spontaneous activity in response to dopamine was elevated under control metabolic conditions, but not under metabolic stress. Strikingly, in the absence of PC, the remaining SN DA neurons were less vulnerable to the PD neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP). Our data indicate conserved PC-dependent neuroadaptive responses to DA lesions in the striatum. Moreover, PC control the integrity and dopamine response of a subtype of SN DA neurons. These results reinforce the critical role of PC as sensors of metabolic stress in PD and other disorders of the dopamine system.

10.
Aging (Albany NY) ; 12(21): 22174-22198, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33146634

RESUMO

Senescence of smooth muscle cells (SMCs) has a crucial role in the pathogenesis of abdominal aortic aneurysm (AAA), a disease of vascular degeneration. Perturbation of cellular ribosomal DNA (rDNA) transcription triggers nucleolar stress response. Previously we demonstrated that induction of nucleolar stress in SMCs elicited cell cycle arrest via the ataxia-telangiectasia mutated (ATM)/ATM- and Rad3-related (ATR)-p53 axis. However, the specific roles of nucleolar stress in vascular degeneration remain unexplored. In the present study, we demonstrated for the first time that in both human and animal AAA tissues, there were non-coordinated changes in the expression of RNA polymerase I machinery components, including a downregulation of transcription initiation factor-IA (TIF-IA). Genetic deletion of TIF-IA in SMCs in mice (smTIF-IA-/-) caused spontaneous aneurysm-like lesions in the aorta. In vitro, induction of nucleolar stress triggered a non-canonical DNA damage response, leading to p53 phosphorylation and a senescence-like phenotype in SMCs. In human AAA tissues, there was increased nucleolar stress in medial cells, accompanied by localized DNA damage response within the nucleolar compartment. Our data suggest that perturbed rDNA transcription and induction of nucleolar stress contribute to the pathogenesis of AAA. Moreover, smTIF-IA-/- mice may be a novel animal model for studying spontaneous AAA-like vascular degenerations.


Assuntos
Nucléolo Celular/patologia , Proliferação de Células , Senescência Celular , Dano ao DNA , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Animais , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Fosforilação , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Transdução de Sinais , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo
12.
J Mol Biol ; 432(4): 930-951, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31794729

RESUMO

The mechanisms by which protein complexes convert from functional to pathogenic are the subject of intensive research. Here, we report how functionally unfavorable protein interactions can be induced by structural fuzziness, i.e., by persisting conformational disorder in protein complexes. We show that extreme disorder in the bound state transforms the intrinsically disordered protein SERF1a from an RNA-organizing factor into a pathogenic enhancer of alpha-synuclein (aSyn) amyloid toxicity. We demonstrate that SERF1a promotes the incorporation of RNA into nucleoli and liquid-like artificial RNA-organelles by retaining an unusually high degree of conformational disorder in the RNA-bound state. However, this type of structural fuzziness also determines an undifferentiated interaction with aSyn. RNA and aSyn both bind to one identical, positively charged site of SERF1a by an analogous electrostatic binding mode, with similar binding affinities, and without any observable disorder-to-order transition. The absence of primary or secondary structure discriminants results in SERF1a being unable to select between nucleic acid and amyloidogenic protein, leading the pro-amyloid aSyn:SERF1a interaction to prevail in the cytosol under conditions of cellular stress. We suggest that fuzzy disorder in SERF1a complexes accounts for an adverse gain-of-interaction which favors toxic binding to aSyn at the expense of nontoxic RNA binding, thereby leading to a functionally distorted and pathogenic process. Thus, structural fuzziness constitutes a direct link between extreme conformational flexibility, amyloid aggregation, and the malfunctioning of RNA-associated cellular processes, three signatures of neurodegenerative proteinopathies.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , RNA/química , alfa-Sinucleína/metabolismo , Animais , Citosol/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Camundongos , Proteínas do Tecido Nervoso/química , Ácidos Nucleicos/química , Ligação Proteica , RNA/metabolismo , Eletricidade Estática , alfa-Sinucleína/química
13.
Nat Commun ; 10(1): 5094, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31704946

RESUMO

Degeneration of dopaminergic neurons in the substantia nigra causes the motor symptoms of Parkinson's disease. The mechanisms underlying this age-dependent and region-selective neurodegeneration remain unclear. Here we identify Cav2.3 channels as regulators of nigral neuronal viability. Cav2.3 transcripts were more abundant than other voltage-gated Ca2+ channels in mouse nigral neurons and upregulated during aging. Plasmalemmal Cav2.3 protein was higher than in dopaminergic neurons of the ventral tegmental area, which do not degenerate in Parkinson's disease. Cav2.3 knockout reduced activity-associated nigral somatic Ca2+ signals and Ca2+-dependent after-hyperpolarizations, and afforded full protection from degeneration in vivo in a neurotoxin Parkinson's mouse model. Cav2.3 deficiency upregulated transcripts for NCS-1, a Ca2+-binding protein implicated in neuroprotection. Conversely, NCS-1 knockout exacerbated nigral neurodegeneration and downregulated Cav2.3. Moreover, NCS-1 levels were reduced in a human iPSC-model of familial Parkinson's. Thus, Cav2.3 and NCS-1 may constitute potential therapeutic targets for combatting Ca2+-dependent neurodegeneration in Parkinson's disease.


Assuntos
Envelhecimento/genética , Canais de Cálcio Tipo R/genética , Proteínas de Transporte de Cátions/genética , Sobrevivência Celular/genética , Neurônios Dopaminérgicos/metabolismo , Proteínas Sensoras de Cálcio Neuronal/genética , Neuropeptídeos/genética , Doença de Parkinson/genética , Envelhecimento/metabolismo , Animais , Canais de Cálcio Tipo R/metabolismo , Sinalização do Cálcio , Proteínas de Transporte de Cátions/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos , Camundongos Knockout , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Substância Negra/metabolismo , Substância Negra/patologia , Regulação para Cima , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/patologia
14.
Cell Rep ; 29(9): 2862-2874.e9, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31775051

RESUMO

Intracellular accumulation of α-synuclein (α-syn) and formation of Lewy bodies are neuropathological characteristics of Parkinson's disease (PD) and related α-synucleinopathies. Oligomerization and spreading of α-syn from neuron to neuron have been suggested as key events contributing to the progression of PD. To directly visualize and characterize α-syn oligomerization and spreading in vivo, we generated two independent conditional transgenic mouse models based on α-syn protein complementation assays using neuron-specifically expressed split Gaussia luciferase or split Venus yellow fluorescent protein (YFP). These transgenic mice allow direct assessment of the quantity and subcellular distribution of α-syn oligomers in vivo. Using these mouse models, we demonstrate an age-dependent accumulation of a specific subtype of α-syn oligomers. We provide in vivo evidence that, although α-syn is found throughout neurons, α-syn oligomerization takes place at the presynapse. Furthermore, our mouse models provide strong evidence for a transsynaptic cell-to-cell transfer of de novo generated α-syn oligomers in vivo.


Assuntos
Neurônios/metabolismo , Doença de Parkinson/genética , alfa-Sinucleína/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos
15.
Front Mol Neurosci ; 12: 106, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31110473

RESUMO

Understanding underlying mechanisms of neurodegenerative diseases is fundamental to develop effective therapeutic intervention. Yet they remain largely elusive, but metabolic, and transcriptional dysregulation are common events. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacetylase, regulating transcription, and critical for the cellular adaptations to metabolic stress. SIRT1 regulates the transcription of ribosomal RNA (rRNA), connecting the energetic state with cell growth and function. The activity of the transcription initiation factor-IA (TIF-IA) is important for the transcriptional regulation of ribosomal DNA (rDNA) genes in the nucleolus, and is also sensitive to changes in the cellular energetic state. Moreover, TIF-IA is responsive to nutrient-deprivation, neurotrophic stimulation, and oxidative stress. Hence, both SIRT1 and TIF-IA connect changes in cellular stress with transcriptional regulation and metabolic adaptation. Moreover, they finely tune the activity of the transcription factor p53, maintain mitochondrial function, and oxidative stress responses. Here we reviewed and discussed evidence that SIRT1 and TIF-IA are regulated by shared pathways and their activities preserve neuronal homeostasis in response to metabolic stressors. We provide evidence that loss of rDNA transcription due to altered TIF-IA function alters SIRT1 expression and propose a model of interdependent feedback mechanisms. An imbalance of this signaling might be a critical common event in neurodegenerative diseases. In conclusion, we provide a novel perspective for the prediction of the therapeutic benefits of the modulation of SIRT1- and nucleolar-dependent pathways in metabolic and neurodegenerative diseases.

16.
J Mol Biol ; 431(9): 1763-1779, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30876917

RESUMO

Dysregulation of protein translation is emerging as a unifying mechanism in the pathogenesis of many neuronal disorders. Ribosomal RNA (rRNA) and transfer RNA (tRNA) are structural molecules that have complementary and coordinated functions in protein synthesis. Defects in both rRNAs and tRNAs have been described in mammalian brain development, neurological syndromes, and neurodegeneration. In this review, we present the molecular mechanisms that link aberrant rRNA and tRNA transcription, processing and modifications to translation deficits, and neuropathogenesis. We also discuss the interdependence of rRNA and tRNA biosynthesis and how their metabolism brings together proteotoxic stress and impaired neuronal homeostasis.


Assuntos
Doença de Alzheimer/genética , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Doença de Huntington/genética , Doença de Parkinson/genética , RNA Ribossômico/genética , RNA de Transferência/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Homeostase/genética , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Neurônios/metabolismo , Neurônios/patologia , Biogênese de Organelas , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Biossíntese de Proteínas , RNA Ribossômico/biossíntese , RNA de Transferência/biossíntese , Ribossomos/genética , Ribossomos/metabolismo , Transcrição Gênica
17.
Sci Rep ; 9(1): 5262, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30918302

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by motor deficits such as tremor, rigidity and bradykinesia. These symptoms are directly caused by the loss of dopaminergic neurons. However, a wealth of clinical evidence indicates that the dopaminergic system is not the only system affected in PD. Postmortem studies of brains from PD patients have revealed the degeneration of noradrenergic neurons in the locus coeruleus (LC) to the same or even greater extent than that observed in the dopaminergic neurons of substantia nigra (SN) and ventral tegmental area (VTA). Moreover, studies performed on rodent models suggest that enhancement of noradrenergic transmission may attenuate the PD-like phenotype induced by MPTP administration, a neurotoxin-based PD model. The aim of this study was to investigate whether chronic treatment with either of two compounds targeting the noradrenergic system (reboxetine or atipamezole) possess the ability to reduce the progression of a PD-like phenotype in a novel mouse model of progressive dopaminergic neurodegeneration induced by the genetic inhibition of rRNA synthesis in dopaminergic neurons, mimicking a PD-like phenotype. The results showed that reboxetine improved the parkinsonian phenotype associated with delayed progression of SN/VTA dopaminergic neurodegeneration and higher dopamine content in the striatum. Moreover, the alpha1-adrenergic agonist phenylephrine enhanced survival of TH+ neurons in primary cell cultures, supporting the putative neuroprotective effects of noradrenergic stimulation. Our results provide new insights regarding the possible influence of the noradrenergic system on dopaminergic neuron survival and strongly support the hypothesis regarding the neuroprotective role of noradrenaline.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Reboxetina/uso terapêutico , Animais , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Feminino , Imidazóis/uso terapêutico , Imuno-Histoquímica , Locus Cerúleo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Área Tegmentar Ventral/citologia
18.
Front Cell Neurosci ; 13: 565, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920562

RESUMO

Multiple pathomechanisms triggered by mutant Huntingtin (mHTT) underlie progressive degeneration of dopaminoceptive striatal neurons in Huntington's disease (HD). The primary cilium is a membrane compartment that functions as a hub for various pathways that are dysregulated in HD, for example, dopamine (DA) receptor transmission and the mechanistic target of rapamycin (mTOR) pathway. The roles of primary cilia (PC) for the maintenance of striatal neurons and in HD progression remain unknown. Here, we investigated PC defects in vulnerable striatal neurons in a progressive model of HD, the mHTT-expressing knock-in zQ175 mice. We found that PC length is affected in striatal but not in cortical neurons, in association with the accumulation of mHTT. To explore the role of PC, we generated conditional mutant mice lacking IFT88, a component of the anterograde intraflagellar transport-B complex lacking PC in dopaminoceptive neurons. This mutation preserved the expression of the dopamine 1 receptor (D1R), and the survival of striatal neurons, but resulted in a mild increase of DA metabolites in the striatum, suggesting an imbalance of ciliary DA receptor transmission. Conditional loss of PC in zQ175 mice did not trigger astrogliosis, however, mTOR signaling was more active and resulted in a more pronounced accumulation of nuclear inclusions containing mHTT. Further studies will be required of aged mice to determine the role of aberrant ciliary function in more advanced stages of HD.

19.
Cell Rep ; 23(6): 1612-1619, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29742419

RESUMO

Retarded growth and neurodegeneration are hallmarks of the premature aging disease Cockayne syndrome (CS). Cockayne syndrome proteins take part in the key step of ribosomal biogenesis, transcription of RNA polymerase I. Here, we identify a mechanism originating from a disturbed RNA polymerase I transcription that impacts translational fidelity of the ribosomes and consequently produces misfolded proteins. In cells from CS patients, the misfolded proteins are oxidized by the elevated reactive oxygen species (ROS) and provoke an unfolded protein response that represses RNA polymerase I transcription. This pathomechanism can be disrupted by the addition of pharmacological chaperones, suggesting a treatment strategy for CS. Additionally, this loss of proteostasis was not observed in mouse models of CS.


Assuntos
Síndrome de Cockayne/patologia , Proteostase , Animais , Linhagem Celular , Síndrome de Cockayne/genética , Estresse do Retículo Endoplasmático , Humanos , Camundongos , Mutação/genética , Estresse Oxidativo , Biossíntese de Proteínas , Dobramento de Proteína , RNA Polimerase I/genética , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/patologia
20.
Mol Neurobiol ; 55(11): 8374-8387, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29546592

RESUMO

Ribosome biogenesis, including the RNA polymerase 1 (Pol1)-mediated transcription of rRNA, is regulated by the pro-epileptogenic mTOR pathway. Therefore, hippocampal Pol1 activity was examined in mouse models of epilepsy including kainic acid- and pilocarpine-induced status epilepticus (SE) as well as a single seizure in response to pentylenetetrazole (PTZ). Elevated 47S pre-rRNA levels were present acutely after induction of SE suggesting activation of Pol1. Conversely, after a single seizure, 47S pre-rRNA was transiently downregulated with increased levels of unprocessed 18S rRNA precursors in the cornu Ammonis (CA) region. At least in the dentate gyrus (DG), the pilocarpine SE-mediated transient activation of Pol1 did not translate into long-term changes of pre-rRNA levels or total ribosome content. Unaltered hippocampal ribosome content was also found after a 20-day PTZ kindling paradigm with increasing pro-convulsive effects of low dose PTZ that was injected every other day. However, after selectively deleting the essential Pol1 co-activator, transcription initiation factor-1A (Tif1a/Rrn3) from excitatory neurons, PTZ kindling was impaired while DG total ribosome content was moderately reduced and no major neurodegeneration was observed throughout the hippocampus. Therefore, Pol1 activity of excitatory neurons is required for PTZ kindling. As seizures affect ribosome biogenesis without long-term effects on the total ribosome content, such a requirement may be associated with a need to produce specialized ribosomes that promote pro-epileptic plasticity.


Assuntos
Epilepsia/enzimologia , Epilepsia/fisiopatologia , Excitação Neurológica/metabolismo , RNA Polimerase I/metabolismo , Convulsões/enzimologia , Convulsões/fisiopatologia , Animais , Modelos Animais de Doenças , Epilepsia/patologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Pentilenotetrazol , Pilocarpina , Precursores de RNA/metabolismo , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Convulsões/patologia , Estado Epiléptico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA