Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(51): e202311340, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37856669

RESUMO

Optimizing processes and materials for the valorization of CO2 to hydrogen carriers or platform chemicals is a key step for mitigating global warming and for the sustainable use of renewables. We report here on the hydrogenation of CO2 in water on ZnO-supported CuAu nanoalloys, based on ≤7 mol % Au. Cux Auy /ZnO catalysts were characterized using 197 Au Mössbauer, in situ X-ray absorption (Au LIII - and Cu K-edges), and ambient pressure X-ray photoelectron (APXP) spectroscopic methods together with X-ray diffraction and high-resolution electron microscopy. At 200 °C, the conversion of CO2 showed a significant increase by 34 times (from 0.1 to 3.4 %) upon increasing Cu93 Au7 loading from 1 to 10 wt %, while maintaining methanol selectivity at 100 %. Limited CO selectivity (4-6 %) was observed upon increasing temperature up to 240 °C but associated with a ≈3-fold increase in CO2 conversion. Based on APXPS during CO2 hydrogenation in an H2 O-rich mixture, Cu segregates preferentially to the surface in a mainly metallic state, while slightly charged Au submerges deeper into the subsurface region. These results and detailed structural analyses are topics of the present contribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA