Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Biotechnol ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38761886

RESUMO

Industrial biotechnology and biocatalysis can provide very effective synthetic tools to increase the sustainability of the production of fine chemicals, especially flavour and fragrance (F&F) ingredients, the market demand of which has been constantly increasing in the last years. One of the most important transformations in F&F chemistry is the reduction of C=C bonds, typically carried out with metal-catalysed hydrogenations or hydride-based reagents. Its biocatalytic counterpart is a competitive alternative, showcasing a range of advantages such as excellent chemo-, regio- and stereoselectivity, ease of implementation, mild reaction conditions and modest environmental impact. In the present review, the application of biocatalysed alkene reductions (from microbial fermentations with wild-type strains to engineered isolated ene-reductase enzymes) to synthetic processes useful for the F&F industry will be described, highlighting not only the exquisite stereoselectivity achieved, but also the overall improvement when chirality is not involved. Multi-enzymatic cascades involving C=C bioreductions are also examined, which allow much greater chemical complexity to be built in one-pot biocatalytic systems.

2.
Small ; : e2311016, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461530

RESUMO

The biosynthesis of Pd nanoparticles supported on microorganisms (bio-Pd) is achieved via the enzymatic reduction of Pd(II) to Pd(0) under ambient conditions using inexpensive buffers and electron donors, like organic acids or hydrogen. Sustainable bio-Pd catalysts are effective for C-C coupling and hydrogenation reactions, but their industrial application is limited by challenges in controlling nanoparticle properties. Here, using the metal-reducing bacterium Geobacter sulfurreducens, it is demonstrated that synthesizing bio-Pd under different Pd loadings and utilizing different electron donors (acetate, formate, hydrogen, no e- donor) influences key properties such as nanoparticle size, Pd(II):Pd(0) ratio, and cellular location. Controlling nanoparticle size and location controls the activity of bio-Pd for the reduction of 4-nitrophenol, whereas high Pd loading on cells synthesizes bio-Pd with high activity, comparable to commercial Pd/C, for Suzuki-Miyaura coupling reactions. Additionally, the study demonstrates the novel synthesis of microbially-supported ≈2 nm PdO nanoparticles due to the hydrolysis of biosorbed Pd(II) in bicarbonate buffer. Bio-PdO nanoparticles show superior activity in 4-nitrophenol reduction compared to commercial Pd/C catalysts. Overall, controlling biosynthesis parameters, such as electron donor, metal loading, and solution chemistry, enables tailoring of bio-Pd physicochemical and catalytic properties.

3.
Nat Chem ; 15(12): 1664-1671, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37667012

RESUMO

Molecular systems with coincident cyclic and superhelical symmetry axes have considerable advantages for materials design as they can be readily lengthened or shortened by changing the length of the constituent monomers. Among proteins, alpha-helical coiled coils have such symmetric, extendable architectures, but are limited by the relatively fixed geometry and flexibility of the helical protomers. Here we describe a systematic approach to generating modular and rigid repeat protein oligomers with coincident C2 to C8 and superhelical symmetry axes that can be readily extended by repeat propagation. From these building blocks, we demonstrate that a wide range of unbounded fibres can be systematically designed by introducing hydrophilic surface patches that force staggering of the monomers; the geometry of such fibres can be precisely tuned by varying the number of repeat units in the monomer and the placement of the hydrophilic patches.


Assuntos
Nanofibras , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Subunidades Proteicas
5.
Flavour Fragr J ; 38(4): 221-242, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38505272

RESUMO

Many aldehydes are volatile compounds with distinct and characteristic olfactory properties. The aldehydic functional group is reactive and, as such, an invaluable chemical multi-tool to make all sorts of products. Owing to the reactivity, the selective synthesis of aldehydic is a challenging task. Nature has evolved a number of enzymatic reactions to produce aldehydes, and this review provides an overview of aldehyde-forming reactions in biological systems and beyond. Whereas some of these biotransformations are still in their infancy in terms of synthetic applicability, others are developed to an extent that allows their implementation as industrial biocatalysts.

6.
Nature ; 604(7904): 86-91, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35388195

RESUMO

Chiral amine diastereomers are ubiquitous in pharmaceuticals and agrochemicals1, yet their preparation often relies on low-efficiency multi-step synthesis2. These valuable compounds must be manufactured asymmetrically, as their biochemical properties can differ based on the chirality of the molecule. Herein we characterize a multifunctional biocatalyst for amine synthesis, which operates using a mechanism that is, to our knowledge, previously unreported. This enzyme (EneIRED), identified within a metagenomic imine reductase (IRED) collection3 and originating from an unclassified Pseudomonas species, possesses an unusual active site architecture that facilitates amine-activated conjugate alkene reduction followed by reductive amination. This enzyme can couple a broad selection of α,ß-unsaturated carbonyls with amines for the efficient preparation of chiral amine diastereomers bearing up to three stereocentres. Mechanistic and structural studies have been carried out to delineate the order of individual steps catalysed by EneIRED, which have led to a proposal for the overall catalytic cycle. This work shows that the IRED family can serve as a platform for facilitating the discovery of further enzymatic activities for application in synthetic biology and organic synthesis.


Assuntos
Aminas , Oxirredutases , Aminação , Aminas/química , Biocatálise , Iminas/química , Oxirredutases/genética , Oxirredutases/metabolismo , Estereoisomerismo
7.
Chembiochem ; 23(1): e202100445, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34586700

RESUMO

Ene-reductases from the Old Yellow Enzyme (OYE) superfamily are a well-known and efficient biocatalytic alternative for the asymmetric reduction of C=C bonds. Considering the broad variety of substituents that can be tolerated, and the excellent stereoselectivities achieved, it is apparent why these enzymes are so appealing for preparative and industrial applications. Different classes of C=C bonds activated by at least one electron-withdrawing group have been shown to be accepted by these versatile biocatalysts in the last decades, affording a vast range of chiral intermediates employed in the synthesis of pharmaceuticals, agrochemicals, flavours, fragrances and fine chemicals. In order to access both enantiomers of reduced products, stereodivergent pairs of OYEs are desirable, but their natural occurrence is limited. The detailed knowledge of the stereochemical course of the reaction can uncover alternative strategies to orient the selectivity via mutagenesis, evolution, and substrate engineering. An overview of the ongoing studies on OYE-mediated bioreductions will be provided, with particular focus on stereochemical investigations by deuterium labelling.


Assuntos
Oxirredutases/química , Estrutura Molecular , Oxirredutases/metabolismo , Estereoisomerismo
8.
Angew Chem Int Ed Engl ; 61(8): e202112855, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-34882925

RESUMO

Electron-rich phenolic substrates can be derived from the depolymerisation of lignin feedstocks. Direct biotransformations of the hydroxycinnamic acid monomers obtained can be exploited to produce high-value chemicals, such as α-amino acids, however the reaction is often hampered by the chemical autooxidation in alkaline or harsh reaction media. Regioselective O-methyltransferases (OMTs) are ubiquitous enzymes in natural secondary metabolic pathways utilising an expensive co-substrate S-adenosyl-l-methionine (SAM) as the methylating reagent altering the physicochemical properties of the hydroxycinnamic acids. In this study, we engineered an OMT to accept a variety of electron-rich phenolic substrates, modified a commercial E. coli strain BL21 (DE3) to regenerate SAM in vivo, and combined it with an engineered ammonia lyase to partake in a one-pot, two whole cell enzyme cascade to produce the l-DOPA precursor l-veratrylglycine from lignin-derived ferulic acid.


Assuntos
Levodopa/biossíntese , Lignina/metabolismo , Metiltransferases/metabolismo , Biocatálise , Levodopa/química , Lignina/química , Metilação , Metiltransferases/química , Estrutura Molecular
9.
Angew Chem Weinheim Bergstr Ger ; 134(8): e202112855, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38505118

RESUMO

Electron-rich phenolic substrates can be derived from the depolymerisation of lignin feedstocks. Direct biotransformations of the hydroxycinnamic acid monomers obtained can be exploited to produce high-value chemicals, such as α-amino acids, however the reaction is often hampered by the chemical autooxidation in alkaline or harsh reaction media. Regioselective O-methyltransferases (OMTs) are ubiquitous enzymes in natural secondary metabolic pathways utilising an expensive co-substrate S-adenosyl-l-methionine (SAM) as the methylating reagent altering the physicochemical properties of the hydroxycinnamic acids. In this study, we engineered an OMT to accept a variety of electron-rich phenolic substrates, modified a commercial E. coli strain BL21 (DE3) to regenerate SAM in vivo, and combined it with an engineered ammonia lyase to partake in a one-pot, two whole cell enzyme cascade to produce the l-DOPA precursor l-veratrylglycine from lignin-derived ferulic acid.

11.
Org Biomol Chem ; 19(25): 5529-5533, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34105582

RESUMO

Promiscuous activity of a glycosyltransferase was exploited to polymerise glucose from UDP-glucose via the generation of ß-1,4-glycosidic linkages. The biocatalyst was incorporated into biocatalytic cascades and chemo-enzymatic strategies to synthesise cello-oligosaccharides with tailored functionalities on a scale suitable for employment in mass spectrometry-based assays. The resulting glycan structures enabled reporting of the activity and selectivity of celluloltic enzymes.


Assuntos
Glicosiltransferases
12.
JACS Au ; 1(4): 508-516, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-34056634

RESUMO

The lack of label-free high-throughput screening technologies presents a major bottleneck in the identification of active and selective biocatalysts, with the number of variants often exceeding the capacity of traditional analytical platforms to assess their activity in a practical time scale. Here, we show the application of direct infusion of biotransformations to the mass spectrometer (DiBT-MS) screening to a variety of enzymes, in different formats, achieving sample throughputs equivalent to ∼40 s per sample. The heat map output allows rapid selection of active enzymes within 96-well plates facilitating identification of industrially relevant biocatalysts. This DiBT-MS screening workflow has been applied to the directed evolution of a phenylalanine ammonia lyase (PAL) as a case study, enhancing its activity toward electron-rich cinnamic acid derivatives which are relevant to lignocellulosic biomass degradation. Additional benefits of the screening platform include the discovery of biocatalysts (kinases, imine reductases) with novel activities and the incorporation of ion mobility technology for the identification of product hits with increased confidence.

13.
Microb Biotechnol ; 14(6): 2435-2447, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33720526

RESUMO

Bimetallic nanoparticle catalysts have attracted considerable attention due to their unique chemical and physical properties. The ability of metal-reducing bacteria to produce highly catalytically active monometallic nanoparticles is well known; however, the properties and catalytic activity of bimetallic nanoparticles synthesized with these organisms is not well understood. Here, we report the one-pot biosynthesis of Pd/Ag (bio-Pd/Ag) and Pd/Au (bio-Pd/Au) nanoparticles using the metal-reducing bacterium, Shewanella oneidensis, under mild conditions. Energy dispersive X-ray analyses performed using scanning transmission electron microscopy (STEM) revealed the presence of both metals (Pd/Ag or Pd/Au) in the biosynthesized nanoparticles. X-ray absorption near-edge spectroscopy (XANES) suggested a significant contribution from Pd(0) and Pd(II) in both bio-Pd/Ag and bio-Pd/Au, with Ag and Au existing predominately as their metallic forms. Extended X-ray absorption fine-structure spectroscopy (EXAFS) supported the presence of multiple Pd species in bio-Pd/Ag and bio-Pd/Au, as inferred from Pd-Pd, Pd-O and Pd-S shells. Both bio-Pd/Ag and bio-Pd/Au demonstrated greatly enhanced catalytic activity towards Suzuki-Miyaura cross-coupling compared to a monometallic Pd catalyst, with bio-Pd/Ag significantly outperforming the others. The catalysts were very versatile, tolerating a wide range of substituents. This work demonstrates a green synthesis method for novel bimetallic nanoparticles that display significantly enhanced catalytic activity compared to their monometallic counterparts.


Assuntos
Ouro , Nanopartículas Metálicas , Catálise
14.
Curr Opin Struct Biol ; 68: 208-214, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33721772

RESUMO

The modular nature of repeat proteins has inspired the design of regular and completely novel sequences and structures. Research in the past years has provided a broad set of design approaches and new repeat proteins that have found applications in molecular recognition, taking advantage of the natural ability of some of these families to bind proteins, peptides and nucleic acids. Here, we provide an overview on the recent trends in design of repeat proteins, particularly solenoid folds, and their applications. By exploiting the intrinsic modularity of repeats, new architectures have been designed that combine different types of repeat, are easily scalable by changing the number of repeats and can be quickly generated by using existing modular building blocks.


Assuntos
Peptídeos , Proteínas , Humanos , Proteínas/genética
15.
Front Bioeng Biotechnol ; 8: 568318, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195130

RESUMO

Molecular models have enabled understanding of biological structures and functions and allowed design of novel macro-molecules. Graphical user interfaces (GUIs) in molecular modeling are generally focused on atomic representations, but, especially for proteins, do not usually address designs of complex and large architectures, from nanometers to microns. Therefore, we have developed Elfin UI as a Blender add-on for the interactive design of large protein architectures with custom shapes. Elfin UI relies on compatible building blocks to design single- and multiple-chain protein structures. The software can be used: (1) as an interactive environment to explore building blocks combinations; and (2) as a computer aided design (CAD) tool to define target shapes that guide automated design. Elfin UI allows users to rapidly build new protein shapes, without the need to focus on amino acid sequence, and aims to make design of proteins and protein-based materials intuitive and accessible to researchers and members of the general public with limited expertise in protein engineering.

16.
Angew Chem Int Ed Engl ; 59(50): 22456-22459, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32857448

RESUMO

Automated chemical oligosaccharide synthesis is an attractive concept that has been successfully applied to a large number of target structures, but requires excess quantities of suitably protected and activated building blocks. Herein we demonstrate the use of biocatalysis to supply such reagents for automated synthesis. By using the promiscuous NmLgtB-B ß1-4 galactosyltransferase from Neisseria meningitidis we demonstrate fast and robust access to the LacNAc motif, common to many cell-surface glycans, starting from either lactose or sucrose as glycosyl donors. The enzymatic product was shown to be successfully incorporated as a complete unit into a tetrasaccharide target by automated assembly.


Assuntos
Automação , Galactosiltransferases/metabolismo , Neisseria meningitidis/enzimologia , Polissacarídeos/biossíntese , Configuração de Carboidratos , Polissacarídeos/química
17.
Cell Chem Biol ; 27(9): 1199-1206.e5, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32619452

RESUMO

Fluorinated sugar-1-phosphates are of emerging importance as intermediates in the chemical and biocatalytic synthesis of modified oligosaccharides, as well as probes for chemical biology. Here we present a systematic study of the activity of a wide range of anomeric sugar kinases (galacto- and N-acetylhexosamine kinases) against a panel of fluorinated monosaccharides, leading to the first examples of polyfluorinated substrates accepted by this class of enzymes. We have discovered four new N-acetylhexosamine kinases with a different substrate scope, thus expanding the number of homologs available in this subclass of kinases. Lastly, we have solved the crystal structure of a galactokinase in complex with 2-deoxy-2-fluorogalactose, giving insight into changes in the active site that may account for the specificity of the enzyme toward certain substrate analogs.


Assuntos
Flúor/química , Galactoquinase/metabolismo , Monossacarídeos/metabolismo , Fosfotransferases/metabolismo , Biocatálise , Domínio Catalítico , Galactoquinase/química , Halogenação , Cinética , Espectroscopia de Ressonância Magnética , Monossacarídeos/química , Fosforilação , Fosfotransferases/química , Especificidade por Substrato
18.
Angew Chem Int Ed Engl ; 59(41): 18156-18160, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32628797

RESUMO

The combination of biocatalysis and chemo-catalysis increasingly offers chemists access to more diverse chemical architectures. Here, we describe the combination of a toolbox of chiral-amine-producing biocatalysts with a Buchwald-Hartwig cross-coupling reaction, affording a variety of α-chiral aniline derivatives. The use of a surfactant allowed reactions to be performed sequentially in the same flask, preventing the palladium catalyst from being inhibited by the high concentrations of ammonia, salts, or buffers present in the aqueous media in most cases. The methodology was further extended by combining with a dual-enzyme biocatalytic hydrogen-borrowing cascade in one pot to allow for the conversion of a racemic alcohol to a chiral aniline.


Assuntos
Aminas/síntese química , Aminação , Aminas/química , Biocatálise , Paládio/química , Estereoisomerismo
19.
Org Biomol Chem ; 18(16): 3142-3148, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32255449

RESUMO

The human cell surface trisaccharide motifs globotriose and P1 antigen play key roles in infections by pathogenic bacteria, which makes them important synthetic targets as antibacterial agents. Enzymatic strategies to install the terminal α1,4-galactosidic linkage are very attractive but have only been demonstrated for a limited set of analogues. Herein, a new bacterial α1,4 galactosyltransferase from N. weaveri was cloned and produced recombinantly in E. coli BL21 (DE3) cells, followed by investigation of its substrate specificity. We demonstrate that the enzyme can tolerate galactosamine (GalN) and also 6-deoxygalactose and 6-deoxy-6-fluorogalactose as donors, and lactose and N-acetyllactosamine as acceptors, leading directly to analogues of Gb3 and P1 that are valuable chemical probes and showcase how biocatalysis can provide fast access to a number of unnatural carbohydrate analogues.


Assuntos
Galactosídeos/síntese química , Galactosiltransferases/metabolismo , Neisseria/enzimologia , Amino Açúcares/metabolismo , Proteínas de Bactérias , Biocatálise , Clonagem Molecular , Escherichia coli/genética , Galactosamina/metabolismo , Galactosídeos/biossíntese , Galactosiltransferases/isolamento & purificação , Globosídeos/química , Humanos , Lactose/metabolismo , Especificidade por Substrato , Trissacarídeos/química
20.
Angew Chem Int Ed Engl ; 59(13): 5308-5311, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-31834658

RESUMO

Chitin is one of the most abundant and cheaply available biopolymers in Nature. Chitin has become a valuable starting material for many biotechnological products through manipulation of its N-acetyl functionality, which can be cleaved under mild conditions using the enzyme family of de-N-acetylases. However, the chemoselective enzymatic re-acylation of glucosamine derivatives, which can introduce new stable functionalities into chitin derivatives, is much less explored. Herein we describe an acylase (CmCDA from Cyclobacterium marinum) that catalyzes the N-acylation of glycosamine with a range of carboxylic acids under physiological reaction conditions. This biocatalyst closes an important gap in allowing the conversion of chitin into complex glycosides, such as C5-modified sialosides, through the use of highly selective enzyme cascades.


Assuntos
Amidoidrolases/metabolismo , Quitina/química , Glucosamina/química , Glicosídeos/síntese química , Açúcares Ácidos/síntese química , Acilação , Amidas/química , Biocatálise , Ácidos Carboxílicos/química , Conformação Molecular , Estereoisomerismo , Açúcares Ácidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA