Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 380(2237): 20210383, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36209807

RESUMO

Using a combination of multipole methods and the method of matched asymptotic expansions, we present a solution procedure for acoustic plane wave scattering by a single Helmholtz resonator in two dimensions. Closed-form representations for the multipole scattering coefficients of the resonator are derived, valid at low frequencies, with three fundamental configurations examined in detail: the thin-walled, moderately thick-walled and extremely thick-walled limits. Additionally, we examine the impact of dissipation for extremely thick-walled resonators, and also numerically evaluate the scattering, absorption and extinction cross-sections (efficiencies) for representative resonators in all three wall thickness regimes. In general, we observe strong enhancement in both the scattered fields and cross-sections at the Helmholtz resonance frequencies. As expected, dissipation is shown to shift the resonance frequency, reduce the amplitude of the field, and reduce the extinction efficiency at the fundamental Helmholtz resonance. Finally, we confirm results in the literature on Willis-like coupling effects for this resonator design, and connect these findings to earlier works by several of the authors on two-dimensional arrays of resonators, deducing that depolarizability effects (off-diagonal terms) for a single resonator do not ensure the existence of Willis coupling effects (bianisotropy) in bulk. This article is part of the theme issue 'Wave generation and transmission in multi-scale complex media and structured metamaterials (part 2)'.

2.
Ultrasonics ; 93: 145-155, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30529738

RESUMO

Nonlinear constitutive mechanical parameters, predominantly governed by micro-damage, interact with ultrasound to generate harmonics that are not present in the excitation. In principle, this phenomenon therefore permits early stage damage identification if these higher harmonics can be measured. To understand the underlying mechanism of harmonic generation, a nonlinear micro-mechanical approach is proposed here, that relates a distribution of clapping micro-cracks to the measurable macroscopic acoustic nonlinearity by representing the crack as an effective inclusion with Landau type nonlinearity at small strain. The clapping mechanism inside each micro-crack is represented by a Taylor expansion of the stress-strain constitutive law, whereby nonlinear terms arise. The micro-cracks are considered distributed in a macroscopic medium and the effective nonlinearity parameter associated with compression is determined via a nonlinear Mori-Tanaka homogenization theory. Relationships are thus obtained between the measurable acoustic nonlinearity and the Landau-type nonlinearity. The framework developed therefore yields links with nonlinear ultrasound, where the dependency of measurable acoustic nonlinearity is, under certain hypotheses, formally related to the density of micro-cracks and the bulk material properties.

3.
J Acoust Soc Am ; 128(2): 571-7, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20707426

RESUMO

The effective mass density of an inhomogeneous medium is discussed. Random configurations of circular cylindrical scatterers are considered, in various physical contexts: fluid cylinders in another fluid, elastic cylinders in a fluid or in another solid, and movable rigid cylinders in a fluid. In each case, time-harmonic waves are scattered, and an expression for the effective wavenumber due to Linton and Martin [J. Acoust. Soc. Am. 117, 3413-3423 (2005)] is used to derive the effective density in the low frequency limit, correct to second order in the area fraction occupied by the scatterers. Expressions are recovered that agree with either the Ament formula or the effective static mass density, depending upon the physical context.


Assuntos
Acústica , Modelos Teóricos , Módulo de Elasticidade , Modelos Lineares , Movimento (Física) , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA