RESUMO
Cyclin-dependent kinases (CDKs) are key regulators of the cell cycle and are frequently altered in cancer cells, thereby leading to uncontrolled proliferation. In this context, CDK2 has emerged as an appealing target for anticancer drug development. Herein, we describe the discovery of a series of selective small molecule inhibitors of CDK2 beginning with historical compounds from our ERK2 program (e.g., compound 6). Structure-based drug design led to the potent and selective tool compound 32, where excellent selectivity against ERK2 and CDK4 was achieved by filling the lipophilic DFG-1 pocket and targeting interactions with CDK2-specific lower hinge binding residues, respectively. Compound 32 demonstrated 112% tumor growth inhibition in mice bearing OVCAR3 tumors with 50 mg/kg bis in die (BID) oral dosing.
RESUMO
The rhodium(II)-catalyzed reaction of a model alkenyl donor/acceptor N-sulfonyltriazole with a wide selection of furans is reported. This investigation unearthed a range of structurally diverse carbocyclic and ring-opened products, in good to excellent yields. The products obtained are proposed to arise selectively via cyclopropanation or zwitterionic rearrangement pathways, which are highly dependent on both the structural and electronic features of the furan substrate.
Assuntos
Ródio , Ródio/química , Triazóis , Reação de Cicloadição , Catálise , Furanos/químicaRESUMO
Herein we present an investigation into the scope and mechanism for the synthesis of cyclopentyl and heterocyclic fused pyridones from the corresponding enyne amides. In the presence of a secondary amine, cyclization proceeds smoothly to form 5,6-bicyclic pyridones in 12-90% yield. The cyclization fails with enyne amides of six-membered and larger ring systems. The ring closure reaction is catalytic in nature with respect to the secondary amine and proceeds via sequential 1,6-addition of the amine, 6-exo-trig ring closure of the iminium intermediate, and subsequent elimination of the secondary amine. Computations show reduced conjugation between the enyne and amide for six-membered and larger systems, thereby providing an explanation for the inability of such enyne amides to form fused pyridones.
Assuntos
Amidas , Piridonas , Catálise , Ciclização , Estrutura MolecularRESUMO
Structure-based optimization of a set of aryl urea RAF inhibitors has led to the identification of Type II pan-RAF inhibitor GNE-9815 (7), which features a unique pyrido[2,3-d]pyridazin-8(7H)-one hinge-binding motif. With minimal polar hinge contacts, the pyridopyridazinone hinge binder moiety affords exquisite kinase selectivity in a lipophilic efficient manner. The improved physicochemical properties of GNE-9815 provided a path for oral dosing without enabling formulations. In vivo evaluation of GNE-9815 in combination with the MEK inhibitor cobimetinib demonstrated synergistic MAPK pathway modulation in an HCT116 xenograft mouse model. To the best of our knowledge, GNE-9815 is among the most highly kinase-selective RAF inhibitors reported to date.
RESUMO
Optimization of a series of aryl urea RAF inhibitors led to the identification of type II pan-RAF inhibitor GNE-0749 (7), which features a fluoroquinazolinone hinge-binding motif. By minimizing reliance on common polar hinge contacts, this hinge binder allows for a greater contribution of RAF-specific residue interactions, resulting in exquisite kinase selectivity. Strategic substitution of fluorine at the C5 position efficiently masked the adjacent polar NH functionality and increased solubility by impeding a solid-state conformation associated with stronger crystal packing of the molecule. The resulting improvements in permeability and solubility enabled oral dosing of 7. In vivo evaluation of 7 in combination with the MEK inhibitor cobimetinib demonstrated synergistic pathway inhibition and significant tumor growth inhibition in a KRAS mutant xenograft mouse model.
Assuntos
Neoplasias/tratamento farmacológico , Compostos de Fenilureia/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinonas/uso terapêutico , Quinases raf/antagonistas & inibidores , Animais , Azetidinas/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Cães , Combinação de Medicamentos , Sinergismo Farmacológico , Feminino , Humanos , Células Madin Darby de Rim Canino , Camundongos Nus , Estrutura Molecular , Mutação , Compostos de Fenilureia/química , Compostos de Fenilureia/metabolismo , Piperidinas/uso terapêutico , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Quinazolinonas/química , Quinazolinonas/metabolismo , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases raf/genética , Quinases raf/metabolismoRESUMO
A class of imidazoisoindole (III) heme-binding indoleamine-2,3-dioxygenase (IDO1) inhibitors were optimized via structure-based drug design into a series of tryptophan-2,3-dioxygenase (TDO)-selective inhibitors. Kynurenine pathway modulation was demonstrated in vivo, which enabled evaluation of TDO as a potential cancer immunotherapy target. As means of mitigating the risk of drug-drug interactions arising from cytochrome P450 inhibition, a novel property-based drug design parameter, herein referred to as the CYP Index, was implemented for the design of inhibitors with appreciable selectivity for TDO over CYP3A4. We anticipate the CYP Index will be a valuable design parameter for optimizing CYP inhibition of any small molecule inhibitor containing a Lewis basic motif capable of binding heme.
RESUMO
We recently reported a convergent strategy to access the polycyclic guanidinium alkaloid (+)-batzelladine B via an aldol addition-retro-aldol-aza-Michael addition cascade. Here we describe the application of this approach toward the total syntheses of (+)-batzelladine E, (-)-dehydrobatzelladine C, and (+)-batzelladine K. The identification of suitable methods to functionalize a common tropane core by electrophilic alkynylation and nucleophilic 1,2-addition were essential to generalizing this approach. We provide evidence for the intermediacy of an acylallene species in the cascade reaction.
RESUMO
Alkaloids, secondary metabolites that contain basic nitrogen atoms, are some of the most well-known biologically active natural products in chemistry and medicine. Although efficient laboratory synthesis of alkaloids would enable the study and optimization of their biological properties, their preparation is often complicated by the basicity and nucleophilicity of nitrogen, its susceptibility to oxidation, and its ability to alter reaction outcomes in unexpected ways--for example, through stereochemical instability and neighbouring group participation. Efforts to address these issues have led to the invention of a large number of protecting groups that temper the reactivity of nitrogen; however, the use of protecting groups typically introduces additional steps and obstacles into the synthetic route. Alternatively, the use of aromatic nitrogen heterocycles as synthetic precursors can attenuate the reactivity of nitrogen and streamline synthetic strategies. Here we use such an approach to achieve a synthesis of the complex anti-HIV alkaloid (+)-batzelladine B in nine steps (longest linear sequence) from simple pyrrole-based starting materials. The route uses several key transformations that would be challenging or impossible to implement using saturated nitrogen heterocycles and highlights some of the advantages of beginning with aromatic reagents.
Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/síntese química , Guanidina/análogos & derivados , Pirróis/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Guanidina/síntese química , Guanidina/química , Nitrogênio/químicaRESUMO
A stereoselective synthesis of cyclohexanes bearing four stereocenters from vinyldiazoacetates and allyl alcohols by a rhodium-carbene initiated domino reaction is described. The reaction cascade features a tandem ylide formation/[2,3]-sigmatropic rearrangement, oxy-Cope rearrangement, and type II carbonyl ene reaction, all of which proceed with a high degree of stereocontrol. The products are routinely isolated with excellent stereocontrol (>97:3 dr, 99% ee).
Assuntos
Cicloexanos/síntese química , Propanóis/química , Ródio/química , Catálise , Cicloexanos/química , Estrutura Molecular , EstereoisomerismoRESUMO
Stereoselective synthesis of a cyclopentane nucleus by convergent annulation constitutes a significant challenge for synthetic chemists. Although a number of biologically relevant cyclopentane natural products are known, more often than not, the cyclopentane core is assembled in a stepwise manner because of the lack of efficient annulation strategies. Here we report the rhodium-catalysed reactions of vinyldiazoacetates with (E)-1,3-disubstituted 2-butenols generate cyclopentanes, containing four new stereogenic centres with very high levels of stereoselectivity (99% ee, >97: 3 dr). The reaction proceeds by a carbene-initiated domino sequence consisting of five distinct steps: rhodium-bound oxonium ylide formation, [2,3]-sigmatropic rearrangement, oxy-Cope rearrangement, enol-keto tautomerization and finally an intramolecular carbonyl ene reaction. A systematic study is presented detailing how to control chirality transfer in each of the four stereo-defining steps of the cascade, consummating in the development of a highly stereoselective process.
Assuntos
Ciclopentanos/síntese química , Metano/análogos & derivados , Ródio/química , Álcoois/química , Catálise , Compostos de Diazônio/química , Metano/química , Estereoisomerismo , Compostos de Vinila/químicaRESUMO
Take your pick A practical method for the synthesis of structurally diverse rhodium vinylcarbenes from stable 1-sulfonyl-1,2,3-triazole precursors has been developed. The reaction is general for a broad range of 4-alkenyl triazoles and dienes, enabling the stereoselective synthesis of a variety of polycyclic imines, which are readily converted into amines or aldehydes in a one-pot process.
RESUMO
The synthesis of highly functionalized pyrroles has been achieved by reaction of rhodium-stabilized imino-carbenes with furans. The reaction features an initial [3+2] annulation to form bicyclic hemiaminals, followed by ring opening to generate trisubstituted pyrroles.
Assuntos
Furanos/química , Pirróis/síntese química , Ródio/química , Catálise , Furanos/síntese química , Iminas/síntese química , Iminas/química , Metano/análogos & derivados , Metano/síntese química , Metano/química , Pirróis/químicaRESUMO
The tandem ylide formation/[2,3]-sigmatropic rearrangement between donor/acceptor rhodium carbenoids and chiral allyl alcohols is a convergent C-C bond forming process, which generates two vicinal stereogenic centers. Any of the four possible stereoisomers can be selectively synthesized by appropriate combination of the chiral catalyst Rh(2)(DOSP)(4) and the chiral alcohol.
Assuntos
Compostos Alílicos/química , Propanóis/química , Compostos Azo/química , Catálise , Compostos Organometálicos/química , Prolina/análogos & derivados , Prolina/química , Ródio/química , EstereoisomerismoRESUMO
A domino sequence has been developed between vinyldiazoacetates and racemic allyl alcohols, involving five distinct steps. The sequence generates highly functionalized cyclopentanes with four new stereogenic centers as single diastereomers in 64-92% ee. The first step is a rhodium-catalyzed oxygen ylide formation, which is then followed by a [2,3]-sigmatropic rearrangement, an oxy-Cope rearrangement, a keto/enol tautomerization, and then finally a carbonyl ene reaction. With appropriate substrates, a further silyl deprotection and a 6-exo-trig cyclization can be added to the domino process.