Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36497160

RESUMO

Attention deficit and hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by alterations in the mesocorticolimbic and nigrostriatal dopaminergic pathways. Polymorphisms in the Synapsin III (Syn III) gene can associate with ADHD onset and even affect the therapeutic response to the gold standard ADHD medication, methylphenidate (MPH), a monoamine transporter inhibitor whose efficacy appears related with the stimulation of brain-derived neurotrophic factor (BDNF). Interestingly, we previously showed that MPH can bind Syn III, which can regulate neuronal development. These observations suggest that Syn III polymorphism may impinge on ADHD onset and response to therapy by affecting BDNF-dependent dopaminergic neuron development. Here, by studying zebrafish embryos exposed to Syn III gene knock-down (KD), Syn III knock-out (ko) mice and human induced pluripotent stem cells (iPSCs)-derived neurons subjected to Syn III RNA interference, we found that Syn III governs the earliest stages of dopaminergic neurons development and that this function is conserved in vertebrates. We also observed that in mammals Syn III exerts this function acting upstream of brain-derived neurotrophic factor (BDNF)- and cAMP-dependent protein kinase 5 (Cdk5)-stimulated dendrite development. Collectively, these findings own significant implications for deciphering the biological basis of ADHD.


Assuntos
Neurônios Dopaminérgicos , Sinapsinas , Animais , Humanos , Camundongos , Fator Neurotrófico Derivado do Encéfalo/genética , Dopamina , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Metilfenidato/uso terapêutico , Camundongos Knockout , Sinapsinas/genética , Sinapsinas/metabolismo , Peixe-Zebra/metabolismo
2.
Front Pharmacol ; 13: 1017364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339574

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated with motor neuron degeneration, progressive paralysis and finally death. Despite the research efforts, currently there is no cure for ALS. In recent years, multiple epigenetic mechanisms have been associated with neurodegenerative diseases. A pathological role for histone hypoacetylation and the abnormal NF-κB/RelA activation involving deacetylation of lysines, with the exclusion of lysine 310, has been established in ALS. Recent findings indicate that the pathological acetylation state of NF-κB/RelA and histone 3 (H3) occurring in the SOD1(G93A) murine model of ALS can be corrected by the synergistic combination of low doses of the AMP-activated kinase (AMPK)-sirtuin 1 pathway activator resveratrol and the histone deacetylase (HDAC) inhibitors MS-275 (entinostat) or valproate. The combination of the epigenetic drugs, by rescuing RelA and the H3 acetylation state, promotes a beneficial and sexually dimorphic effect on disease onset, survival and motor neurons degeneration. In this mini review, we discuss the potential of the epigenetic combination of resveratrol with HDAC inhibitors in the ALS treatment.

3.
Cell Rep ; 40(13): 111417, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170815

RESUMO

The effects of fasting-mimicking diet (FMD) cycles in reducing many aging and disease risk factors indicate it could affect Alzheimer's disease (AD). Here, we show that FMD cycles reduce cognitive decline and AD pathology in E4FAD and 3xTg AD mouse models, with effects superior to those caused by protein restriction cycles. In 3xTg mice, long-term FMD cycles reduce hippocampal Aß load and hyperphosphorylated tau, enhance genesis of neural stem cells, decrease microglia number, and reduce expression of neuroinflammatory genes, including superoxide-generating NADPH oxidase (Nox2). 3xTg mice lacking Nox2 or mice treated with the NADPH oxidase inhibitor apocynin also display improved cognition and reduced microglia activation compared with controls. Clinical data indicate that FMD cycles are feasible and generally safe in a small group of AD patients. These results indicate that FMD cycles delay cognitive decline in AD models in part by reducing neuroinflammation and/or superoxide production in the brain.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Jejum , Camundongos , Camundongos Transgênicos , NADPH Oxidases , Doenças Neuroinflamatórias , Superóxidos , Proteínas tau/metabolismo
4.
Front Behav Neurosci ; 16: 831664, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368305

RESUMO

Non-motor symptoms are frequently observed in Parkinson's disease (PD) and precede the onset of motor deficits by years. Among them, neuropsychiatric symptoms, including anxiety, depression, and apathy, are increasingly considered as a major challenge for patients with PD and their caregivers. We recently reported that mice lacking the nuclear factor-κB (NF-κB)/c-Rel protein (c-rel-/- mice) develop an age-dependent PD-like pathology and phenotype characterized by the onset of non-motor symptoms, including constipation and hyposmia, starting at 2 months of age, and motor deficits at 18 months. To assess whether c-rel-/- mice also suffer from neuropsychiatric symptoms, in this study we tested different cohorts of wild-type (wt) and c-rel-/- mice at 3, 6, 12, and 18-20 months with different behavioral tests. Mice lacking c-Rel displayed anxiety and depressive-like behavior starting in the premotor phase at 12 months, as indicated by the analysis with the open field (OF) test and the forced swim test with water wheel (FST), respectively. A deficit in the goal-oriented nesting building test was detected at 18-20 months, suggesting apathetic behavior. Taken together, these results indicate that c-rel-/- mice recapitulate the onset and the progression of PD-related neuropsychiatric symptoms. Therefore, this animal model may represent a valuable tool to study the prodromal stage of PD and for testing new therapeutic strategies to alleviate neuropsychiatric symptoms.

5.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35162978

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disorder. There is no cure and current treatments fail to slow the progression of the disease. Epigenetic modulation in the acetylation state of NF-kB RelA and the histone 3 (H3) protein, involved in the development of neurodegeneration, is a drugable target for the class-I histone deacetylases (HDAC) inhibitors, entinostat or valproate, and the AMP-activated kinase (AMPK)-sirtuin 1 pathway activator, resveratrol. In this study, we demonstrated that the combination of valproate and resveratrol can restore the normal acetylation state of RelA in the SOD1(G93A) murine model of ALS, in order to obtain the neuroprotective form of NF-kB. We also investigated the sexually dimorphic development of the disease, as well as the sex-sensibility to the treatment administered. We showed that the combined drugs, which rescued AMPK activation, RelA and the histone 3 acetylation state, reduced the motor deficit and the disease pathology associated with motor neuron loss and microglial reactivity, Brain-Derived Neurotrophic Factor (BDNF) and B-cell lymphoma-extra large (Bcl-xL) level decline. Specifically, vehicle-administered males showed earlier onset and slower progression of the disease when compared to females. The treatment, administered at 50 days of life, postponed the time of onset in the male by 22 days, but not in a significant way in females. Nevertheless, in females, the drugs significantly reduced symptom severity of the later phase of the disease and prolonged the mice's survival. Only minor beneficial effects were produced in the latter stage in males. Overall, this study shows a beneficial and sexually dimorphic response to valproate and resveratrol treatment in ALS mice.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas Quinases Ativadas por AMP/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Feminino , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histonas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Sirtuína 1/metabolismo , Superóxido Dismutase/metabolismo , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico
6.
Mol Ther ; 30(4): 1465-1483, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35038583

RESUMO

Fibrillary aggregated α-synuclein (α-syn) deposition in Lewy bodies (LB) characterizes Parkinson's disease (PD) and is believed to trigger dopaminergic synaptic failure and a retrograde terminal-to-cell body neuronal degeneration. We described that the neuronal phosphoprotein synapsin III (Syn III) cooperates with α-syn to regulate dopamine (DA) release and can be found in the insoluble α-syn fibrils composing LB. Moreover, we showed that α-syn aggregates deposition, and the associated onset of synaptic deficits and neuronal degeneration occurring following adeno-associated viral vectors-mediated overexpression of human α-syn in the nigrostriatal system are hindered in Syn III knock out mice. This supports that Syn III facilitates α-syn aggregation. Here, in an interventional experimental design, we found that by inducing the gene silencing of Syn III in human α-syn transgenic mice at PD-like stage with advanced α-syn aggregation and overt striatal synaptic failure, we could lower α-syn aggregates and striatal fibers loss. In parallel, we observed recovery from synaptic vesicles clumping, DA release failure, and motor functions impairment. This supports that Syn III consolidates α-syn aggregates, while its downregulation enables their reduction and redeems the PD-like phenotype. Strategies targeting Syn III could thus constitute a therapeutic option for PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Dopamina , Neurônios Dopaminérgicos/metabolismo , Inativação Gênica , Camundongos , Camundongos Transgênicos , Doença de Parkinson/genética , Doença de Parkinson/terapia , Fenótipo , Substância Negra/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
7.
J Neuroinflammation ; 17(1): 361, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33246465

RESUMO

BACKGROUND: Activation of NF-kappaB RelA deacetylated at the lysine residues, except the lysine 310, drives pro-apoptotic transcription in noxious brain ischemia. We showed that the sinergistic combination of the histone deacetilase inhibitor MS-275 with the sirtuin 1 activator resveratrol, at very low doses, restores normal RelA acetylation and elicit neuroprotection in mice subjected to transient middle cerebral artery occlusion (tMCAO) and primary cortical neurons exposed to oxygen-glucose-deprivation (OGD). The present study aims at corroborating the neuroprotective potential of the epigenetic treatment in a model of permanent brain ischemia and investigate its effect on post-ischemic inflammation and microglia activation. METHODS: Male mice subjected to permanent occlusion of the distal MCAO (pMCAO) were treated with vehicle or MS-275 (20 µg/kg) and resveratrol (680 µg/kg) i.p. immediately after the ischemia. Microglia-containing mixed glial cultures were prepared from the brain of 1-3-day-old mice. Primary cortical neurons were prepared from 15-day-old embryonic mice. RESULTS: MS-275 and resveratrol in combination, but not individually, reduced infarct volume and neurological deficits evaluated 48 h after the pMCAO. At 24 h, the treatment inhibited the RelA binding to Nos2 promoter, reduced the elevated expression of Nos2, Il6, Il1b, Mrc1 and Ym1 and the leukocytes infiltration in the ischemic area. The effect was nonpermanent. The treatment did not limit the sustained leukocyte infiltration or Nos2 and Il1b transcription observed at 7 days. Though, it induced alternative activation markers of microglia/macrophages, Arg1, Ym1 and Fcgr2b that could be added to Mrc1, Tgfb1 and Trem2 spontaneously increased at 7 days after ischemia. At 24 hours the drug treatment quenched the microglia/macrophages activation in the ischemic cortical sections, as shown by the recovered ramified morphology and lowered iNOS or CD68 immunoreactivity in Iba1-positive cells. Both microglia and astrocytes in mixed glial cultures, but not pure astrocytes, displayed signs of activation and iNOS-immunoreactivity when treated with a conditioned medium (NCM) from OGD-exposed cortical neurons. The epigenetic drugs limited the OGD-NCM-mediated activation. CONCLUSIONS: Our findings indicate that single treatment with MS-275 and resveratrol can reduce stroke-mediated brain injury and inflammation observed 2 days after the pMCAO and put the rational to test repeated administration of the drugs. The anti-inflammatory property of MS-275 and resveratrol combination can be ascribed to both primary direct inhibition of microglia/macrophage activation and secondary glial/macrophages inhibition mediated by neuroprotection.


Assuntos
Infarto da Artéria Cerebral Média/patologia , Ativação de Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Antioxidantes/farmacologia , Benzamidas/farmacologia , Modelos Animais de Doenças , Inibidores de Histona Desacetilases/farmacologia , Infarto da Artéria Cerebral Média/imunologia , Inflamação/imunologia , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Piridinas/farmacologia , Resveratrol/farmacologia
8.
Front Aging Neurosci ; 12: 68, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265684

RESUMO

The loss of dopaminergic neurons of the nigrostriatal system underlies the onset of the typical motor symptoms of Parkinson's disease (PD). Lewy bodies (LB) and Lewy neurites (LN), proteinaceous inclusions mainly composed of insoluble α-synuclein (α-syn) fibrils are key neuropathological hallmarks of the brain of affected patients. Compelling evidence supports that in the early prodromal phases of PD, synaptic terminal and axonal alterations initiate and drive a retrograde degeneration process culminating with the loss of nigral dopaminergic neurons. This notwithstanding, the molecular triggers remain to be fully elucidated. Although it has been shown that α-syn fibrillary aggregation can induce early synaptic and axonal impairment and cause nigrostriatal degeneration, we still ignore how and why α-syn fibrillation begins. Nuclear factor-κB (NF-κB) transcription factors, key regulators of inflammation and apoptosis, are involved in the brain programming of systemic aging as well as in the pathogenesis of several neurodegenerative diseases. The NF-κB family of factors consists of five different subunits (c-Rel, p65/RelA, p50, RelB, and p52), which combine to form transcriptionally active dimers. Different findings point out a role of RelA in PD. Interestingly, the nuclear content of RelA is abnormally increased in nigral dopamine (DA) neurons and glial cells of PD patients. Inhibition of RelA exert neuroprotection against (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) MPTP and 1-methyl-4-phenylpyridinium (MPP+) toxicity, suggesting that this factor decreases neuronal resilience. Conversely, the c-Rel subunit can exert neuroprotective actions. We recently described that mice deficient for c-Rel develop a PD-like motor and non-motor phenotype characterized by progressive brain α-syn accumulation and early synaptic changes preceding the frank loss of nigrostriatal neurons. This evidence supports that dysregulations in this transcription factors may be involved in the onset of PD. This review highlights observations supporting a possible interplay between NF-κB dysregulation and α-syn pathology in PD, with the aim to disclose novel potential mechanisms involved in the pathogenesis of this disorder.

9.
Nutrients ; 13(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383852

RESUMO

Polyphenols are an important family of molecules of vegetal origin present in many medicinal and edible plants, which represent important alimentary sources in the human diet. Polyphenols are known for their beneficial health effects and have been investigated for their potential protective role against various pathologies, including cancer, brain dysfunctions, cardiovascular diseases and stroke. The prevention of stroke promoted by polyphenols relies mainly on their effect on cardio- and cerebrovascular systems. However, a growing body of evidence from preclinical models of stroke points out a neuroprotective role of these molecules. Notably, in many preclinical studies, the polyphenolic compounds were effective also when administered after the stroke onset, suggesting their possible use in promoting recovery of patients suffering from stroke. Here, we review the effects of the major polyphenols in cellular and in vivo models of both ischemic and hemorrhagic stroke in immature and adult brains. The results from human studies are also reported.


Assuntos
Polifenóis/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/prevenção & controle , Animais , Isquemia Encefálica , Hemorragia Cerebral , Diarileptanoides , Ácido Elágico , Flavonoides/farmacologia , Microbioma Gastrointestinal , Humanos , Taninos Hidrolisáveis , Hidroxibenzoatos , Lignanas , Polifenóis/classificação , Estilbenos , Hemorragia Subaracnóidea
10.
Cells ; 8(5)2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083342

RESUMO

Mast cells (MCs) are densely granulated perivascular resident cells of hematopoietic origin. Through the release of preformed mediators stored in their granules and newly synthesized molecules, they are able to initiate, modulate, and prolong the immune response upon activation. Their presence in the central nervous system (CNS) has been documented for more than a century. Over the years, MCs have been associated with various neuroinflammatory conditions of CNS, including stroke. They can exacerbate CNS damage in models of ischemic and hemorrhagic stroke by amplifying the inflammatory responses and promoting brain-blood barrier disruption, brain edema, extravasation, and hemorrhage. Here, we review the role of these peculiar cells in the pathophysiology of stroke, in both immature and adult brain. Further, we discuss the role of MCs as potential targets for the treatment of stroke and the compounds potentially active as MCs modulators.


Assuntos
Barreira Hematoencefálica/imunologia , Edema Encefálico/imunologia , Isquemia Encefálica/imunologia , Encefalite/imunologia , Mastócitos/imunologia , Acidente Vascular Cerebral/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Mastócitos/citologia , Camundongos , Ratos
11.
Transl Neurodegener ; 8: 16, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139367

RESUMO

BACKGROUND: Parkinson's disease (PD), the most common neurodegenerative movement disorder, is characterized by dopaminergic nigrostriatal neuron loss and brain accumulation of Lewy bodies, protein aggregates mainly composed of α-synuclein. We reported that mice deficient for NF-κB/c-Rel (c-rel-/-) develop a late-onset parkinsonism. At 18 months of age, c-rel-/- mice showed nigrostriatal degeneration and accumulation of α-synuclein aggregates associated with a motor impairment responsive to L-DOPA administration. Being c-Rel protein a transcriptional regulator for mitochondrial anti-oxidant and antiapoptotic factors, it has been inferred that its deficiency may affect the resilience of "energy demanding" nigral dopaminergic neurons to the aging process. PD patients manifest a prodromal syndrome that includes olfactory and gastrointestinal dysfunctions years before the frank degeneration of nigrostriatal neurons and appearance of motor symptoms. According to the Braak staging, the onset of non-motor and motor symptoms relates to progressive ascendant diffusion of α-synuclein pathology in the brain. The aim of this study was to identify whether c-rel-/- deficiency is associated with the onset of premotor signs of PD and spatio-temporal progression of cerebral α-synuclein deposition. METHODS: Intestinal and olfactory functions, intestine and brain α-synuclein deposition as well as striatal alterations, were assessed in c-rel-/- and control mice from 2 to 18 months of age. RESULTS: From 2 months of age, c-rel-/- mice displayed intestinal constipation and increasing olfactory impairment. At 2 months, c-rel-/- mice exhibited a mild α-synuclein accumulation in the distal colon. Moreover, they developed an age-dependent deposition of fibrillary α-synuclein that, starting at 5 months from the olfactory bulbs, dorsal motor nucleus of vagus and locus coeruleus, reached the substantia nigra at 12 months. At this age, the α-synuclein pathology associated with a drop of dopamine transporter in the striatum that anticipated by 6 months the axonal degeneration. From 12 months onwards oxidative/nitrosative stress developed in the striatum in parallel with altered expression of mitochondrial homeostasis regulators in the substantia nigra. CONCLUSIONS: In c-rel-/- mice, reproducing a parkinsonian progressive pathology with non-motor and motor symptoms, a Braak-like pattern of brain ascending α-synuclein deposition occurs. The peculiar phenotype of c-rel-/- mice envisages a potential contribution of c-Rel dysregulation to the pathogenesis of PD.

12.
Nutrients ; 11(2)2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30736313

RESUMO

Bioactive components, due in part to their epigenetic properties, are beneficial for preventing several human diseases including cerebrovascular pathologies. However, no clear demonstration supports the idea that these molecules still conserve their epigenetic effects when acting at very low concentrations reproducing the brain levels achieved after oral administration of a micronutrient supplement. In the present study, we used a cellular model of brain ischemia to investigate the neuroprotective and epigenetic activities of a commercially available micronutrient mixture (polyphenol-enriched micronutrient mixture, PMM) enriched in polyphenols ((-)-epigallocatechin-3-gallate, quercetin, resveratrol), α-lipoic acid, vitamins, amino acids and other micronutrients. Mimicking the suggested dietary supplementation, primary cultures of mouse cortical neurons were pre-treated with PMM and then subjected to oxygen glucose deprivation (OGD). Pre-treatment with PMM amounts to provide bioactive components in the medium in the nanomolar range potently prevented neuronal cell death. The protection was associated with the deacetylation of the lysin 310 (K310) on NF-κB/RelA as well as the deacetylation of H3 histones at the promoter of Bim, a pro-apoptotic target of ac-RelA(K310) in brain ischemia. Epigenetic regulators known to shape the acetylation state of ac-RelA(K310) moiety are the histone acetyl transferase CBP/p300 and the class III histone deacetylase sirtuin-1. In view of that evidence, the protection we here report unveils the efficacy of bioactive components endowed with either inhibitory activity on CBP/p300 or stimulating activity on the AMP-activated protein kinase⁻sirtuin 1 pathway. Our results support a potential synergistic effect of micronutrients in the PMM, suggesting that the intake of a polyphenol-based micronutrient mixture can reduce neuronal vulnerability to stressful conditions at concentrations compatible with the predicted brain levels reached by a single constituent after an oral dose of PMM.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Suplementos Nutricionais , Fármacos Neuroprotetores/farmacologia , Polifenóis/farmacologia , Acetilação/efeitos dos fármacos , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Técnicas de Cultura de Células , Epigênese Genética/efeitos dos fármacos , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Quercetina/farmacologia , Resveratrol/farmacologia , Fator de Transcrição RelA/metabolismo
13.
Sci Rep ; 8(1): 12875, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150770

RESUMO

Dysregulation in acetylation homeostasis has been implicated in the pathogenesis of the amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. It is known that the acetylation of transcriptional factors regulates their activity. The acetylation state of NF-kB RelA has been found to dictate the neuroprotective versus the neurotoxic effect of p50/RelA. Here we showed that the pro-apoptotic acetylation mode of RelA, involving a general lysine deacetylation of the subunit with the exclusion of the lysine 310, is evident in the lumbar spinal cord of SOD1(G93A) mice, a murine model of ALS. The administration of the HDAC inhibitor MS-275 and the AMPK/sirtuin 1 activator resveratrol restored the normal RelA acetylation in SOD1(G93A) mice. The SOD1(G93A) mice displayed a 3 weeks delay of the disease onset, associated with improvement of motor performance, and 2 weeks increase of lifespan. The epigenetic treatment rescued the lumbar motor neurons affected in SOD1(G93A) mice, accompanied by increased levels of protein products of NF-kB-target genes, Bcl-xL and brain-derived neurotrophic factor. In conclusion, we here demonstrate that MS-275 and resveratrol restore the acetylation state of RelA in the spinal cord, delaying the onset and increasing the lifespan of SOD1(G93A) mice.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/mortalidade , Epigênese Genética/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fator de Transcrição RelA/metabolismo , Acetilação , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/etiologia , Animais , Biomarcadores , Modelos Animais de Doenças , Histonas/metabolismo , Camundongos , Neurônios Motores/metabolismo , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Prognóstico , Resveratrol/farmacologia , Transdução de Sinais , Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo , Resultado do Tratamento
14.
Int J Mol Sci ; 19(1)2018 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-29316653

RESUMO

Histone deacetylation, together with altered acetylation of NF-κB/RelA, encompassing the K310 residue acetylation, occur during brain ischemia. By restoring the normal acetylation condition, we previously reported that sub-threshold doses of resveratrol and entinostat (MS-275), respectively, an activator of the AMP-activated kinase (AMPK)-sirtuin 1 pathway and an inhibitor of class I histone deacetylases (HDACs), synergistically elicited neuroprotection in a mouse model of ischemic stroke. To improve the translational power of this approach, we investigated the efficacy of MS-275 replacement with valproate, the antiepileptic drug also reported to be a class I HDAC blocker. In cortical neurons previously exposed to oxygen glucose deprivation (OGD), valproate elicited neuroprotection at 100 nmol/mL concentration when used alone and at 1 nmol/mL concentration when associated with resveratrol (3 nmol/mL). Resveratrol and valproate restored the acetylation of histone H3 (K9/18), and they reduced the RelA(K310) acetylation and the Bim level in neurons exposed to OGD. Chromatin immunoprecipitation analysis showed that the synergistic drug association impaired the RelA binding to the Bim promoter, as well as the promoter-specific H3 (K9/18) acetylation. In mice subjected to 60 min of middle cerebral artery occlusion (MCAO), the association of resveratrol 680 µg/kg and valproate 200 µg/kg significantly reduced the infarct volume as well as the neurological deficits. The present study suggests that valproate and resveratrol may represent a promising ready-to-use strategy to treat post-ischemic brain damage.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Estilbenos/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Ácido Valproico/uso terapêutico , Acetilação/efeitos dos fármacos , Animais , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Modelos Animais de Doenças , Sinergismo Farmacológico , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Regiões Promotoras Genéticas , Ligação Proteica , Resveratrol , Estilbenos/farmacologia , Acidente Vascular Cerebral/patologia , Fator de Transcrição RelA/metabolismo , Ácido Valproico/farmacologia
15.
Front Aging Neurosci ; 9: 229, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769786

RESUMO

The impact of neuroinflammation and microglial activation to Parkinson's disease (PD) progression is still debated. Post-mortem analysis of PD brains has shown that neuroinflammation and microgliosis are key features of end-stage disease. However, microglia neuroimaging studies and evaluation of cerebrospinal fluid (CSF) cytokines in PD patients at earlier stages do not support the occurrence of a pronounced neuroinflammatory process. PD animal models recapitulating the motor and non-motor features of the disease, and the slow and progressive neuropathology, can be of great advantage in understanding whether and how neuroinflammation associates with the onset of symptoms and neuronal loss. We recently described that 18-month-old NF-κB/c-Rel deficient mice (c-rel-/-) develop a spontaneous late-onset PD-like phenotype encompassing L-DOPA-responsive motor impairment, nigrostriatal neuron degeneration, α-synuclein and iron accumulation. To assess whether inflammation and microglial activation accompany the onset and the progression of PD-like pathology, we investigated the expression of cytokines (interleukin 1 beta (Il1b), interleukin 6 (Il6)) and microglial/macrophage activation markers (Fc gamma receptor III (Fcgr3), mannose receptor 1 (Mrc1), chitinase-like 3 (Ym1), arginase 1 (Arg 1), triggering receptor expressed on myeloid cells 2 (Trem2)), together with microglial ionized calcium binding adapter molecule 1 (Iba1) and astrocyte glial fibrillary acidic protein (GFAP) immunolabeling, in the substantia nigra (SN) of c-rel-/- mice, at premotor (4- and 13-month-old) and motor phases (18-month-old). By quantitative real-time RT-PCR we found increased M2c microglial/macrophage markers expression (Mrc1 and Arg1) in 4-month-old c-rel-/- mice. M2-type transcription dropped down in 13-month-old c-rel-/- mice. At this age, the pro-inflammatory Il1b, but not Il6 or the microglia-macrophage M1-polarization marker Fcgr3/CD16, increased when compared to wild-type (wt). Furthermore, no significant variation in the transcription of inflammatory and microglial/macrophage activation genes was present in 18-month-old c-rel-/- mice, that display motor dysfunctions and dopaminergic neuronal loss. Immunofluorescence analysis of Iba1-positive cells in the SN revealed no sign of overt microglial activation in c-rel-/- mice at all the time-points. MRC1-Iba1-positive cells were identified as non-parenchymal macrophages in 4-month-old c-rel-/- mice. Finally, no sign of astrogliosis was detected in the SN of the diverse animal groups. In conclusion, this study supports the presence of a mild inflammatory profile without evident signs of gliosis in c-rel-/- mice up to 18 months of age. It suggests that symptomatic PD-like phenotype can develop in the absence of concomitant severe inflammatory process.

16.
Int J Mol Sci ; 18(1)2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28106772

RESUMO

CSP-1103 (formerly CHF5074) has been shown to reverse memory impairment and reduce amyloid plaque as well as inflammatory microglia activation in preclinical models of Alzheimer's disease. Moreover, it was found to improve cognition and reduce brain inflammation in patients with mild cognitive impairment. Recent evidence suggests that CSP-1103 acts through a single molecular target, the amyloid precursor protein intracellular domain (AICD), a transcriptional regulator implicated in inflammation and apoptosis. We here tested the possible anti-apoptotic and neuroprotective activity of CSP-1103 in a cell-based model of post-ischemic injury, wherein the primary mouse cortical neurons were exposed to oxygen-glucose deprivation (OGD). When added after OGD, CSP-1103 prevented the apoptosis cascade by reducing cytochrome c release and caspase-3 activation and the secondary necrosis. Additionally, CSP-1103 limited earlier activation of p38 and nuclear factor κB (NF-κB) pathways. These results demonstrate that CSP-1103 is neuroprotective in a model of post-ischemic brain injury and provide further mechanistic insights as regards its ability to reduce apoptosis and potential production of pro-inflammatory cytokines. In conclusion, these findings suggest a potential use of CSP-1103 for the treatment of brain ischemia.


Assuntos
Apoptose/efeitos dos fármacos , Ciclopropanos/farmacologia , Flurbiprofeno/análogos & derivados , Glucose/deficiência , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Oxigênio/farmacologia , Animais , Caspase 3/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Córtex Cerebral/patologia , Citocromos c/metabolismo , Ativação Enzimática/efeitos dos fármacos , Flurbiprofeno/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Ibuprofeno/farmacologia , Camundongos Endogâmicos C57BL , Necrose , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fator de Transcrição RelA/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Brain Res ; 1648(Pt A): 409-417, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27423516

RESUMO

The combination of palmitoylethanolamide (PEA), an endogenous fatty acid amide belonging to the family of the N-acylethanolamines, and the flavonoid luteolin has been found to exert neuroprotective activities in a variety of mouse models of neurological disorders, including brain ischemia. Indirect findings suggest that the two molecules can reduce the activation of mastocytes in brain ischemia, thus modulating crucial cells that trigger the inflammatory cascade. Though, no evidence exists about a direct effect of PEA and luteolin on mast cells in experimental models of brain ischemia, either used separately or in combination. In order to fill this gap, we developed a novel cell-based model of severe brain ischemia consisting of primary mouse cortical neurons and cloned mast cells derived from mouse fetal liver (MC/9 cells) subjected to oxygen and glucose deprivation (OGD). OGD exposure promoted both mast cell degranulation and the release of lactate dehydrogenase (LDH) in a time-dependent fashion. MC/9 cells exacerbated neuronal damage in neuron-mast cells co-cultures exposed to OGD. Likewise, the conditioned medium derived from OGD-exposed MC/9 cells induced significant neurotoxicity in control primary neurons. PEA and luteolin pre-treatment synergistically prevented the OGD-induced degranulation of mast cells and reduced the neurotoxic potential of MC/9 cells conditioned medium. Finally, the association of the two drugs promoted a direct synergistic neuroprotection even in pure cortical neurons exposed to OGD. In summary, our results indicate that mast cells release neurotoxic factors upon OGD-induced activation. The association PEA-luteolin actively reduces mast cell-mediated neurotoxicity as well as pure neurons susceptibility to OGD.


Assuntos
Isquemia Encefálica/prevenção & controle , Etanolaminas/farmacologia , Luteolina/farmacologia , Mastócitos/efeitos dos fármacos , Mastócitos/fisiologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ácidos Palmíticos/farmacologia , Amidas , Animais , Degranulação Celular , Células Cultivadas , Técnicas de Cocultura , Etanolaminas/administração & dosagem , Glucose/metabolismo , L-Lactato Desidrogenase/metabolismo , Luteolina/administração & dosagem , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Oxigênio/metabolismo , Ácidos Palmíticos/administração & dosagem
18.
Front Neurol ; 6: 98, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042083

RESUMO

NF-κB factors are cardinal transcriptional regulators of inflammation and apoptosis, involved in the brain programing of systemic aging and in brain damage. The composition of NF-κB active dimers and epigenetic mechanisms modulating histone acetylation, finely condition neuronal resilience to brain insults. In stroke models, the activation of NF-κB/c-Rel promotes neuroprotective effects by transcription of specific anti-apoptotic genes. Conversely, aberrant activation of NF-κB/RelA showing reduced level of total acetylation, but site-specific acetylation on lysine 310, triggers the expression of pro-apoptotic genes. Constitutive knockout of c-Rel shatters the resilience of substantia nigra (SN) dopaminergic (DA) neurons to aging and induces a parkinsonian like pathology in mice. c-rel(-/-) mice show increased level of aberrantly acetylated RelA in the basal ganglia, neuroinflammation, accumulation of alpha-synuclein, and iron. Moreover, they develop motor deficits responsive to l-DOPA treatment and associated with loss of DA neurons in the SN. Here, we discuss the effect of unbalanced activation of RelA and c-Rel during aging and propose novel challenges for the development of therapeutic strategies in neurodegenerative diseases.

19.
Aging Cell ; 12(2): 257-68, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23362919

RESUMO

In laboratory animals, calorie restriction (CR) protects against aging, oxidative stress, and neurodegenerative pathologies. Reduced levels of growth hormone and IGF-1, which mediate some of the protective effects of CR, can also extend longevity and/or protect against age-related diseases in rodents and humans. However, severely restricted diets are difficult to maintain and are associated with chronically low weight and other major side effects. Here we show that 4 months of periodic protein restriction cycles (PRCs) with supplementation of nonessential amino acids in mice already displaying significant cognitive impairment and Alzheimer's disease (AD)-like pathology reduced circulating IGF-1 levels by 30-70% and caused an 8-fold increase in IGFBP-1. Whereas PRCs did not affect the levels of ß amyloid (Aß), they decreased tau phosphorylation in the hippocampus and alleviated the age-dependent impairment in cognitive performance. These results indicate that periodic protein restriction cycles without CR can promote changes in circulating growth factors and tau phosphorylation associated with protection against age-related neuropathologies.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/dietoterapia , Dieta com Restrição de Proteínas/métodos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas tau/sangue , Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/sangue , Animais , Cognição/fisiologia , Modelos Animais de Doenças , Expressão Gênica , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Fator de Crescimento Insulin-Like I/genética , Masculino , Camundongos , Fosforilação , Proteínas tau/genética
20.
J Neurosci ; 30(29): 9695-707, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20660252

RESUMO

Conservation of normal cognitive functions relies on the proper performance of the nervous system at the cellular and molecular level. The mammalian nicotinamide-adenine dinucleotide-dependent deacetylase SIRT1 impacts different processes potentially involved in the maintenance of brain integrity, such as chromatin remodeling, DNA repair, cell survival, and neurogenesis. Here we show that SIRT1 is expressed in neurons of the hippocampus, a key structure in learning and memory. Using a combination of behavioral and electrophysiological paradigms, we analyzed the effects of SIRT1 deficiency and overexpression on mouse learning and memory as well as on synaptic plasticity. We demonstrated that the absence of SIRT1 impaired cognitive abilities, including immediate memory, classical conditioning, and spatial learning. In addition, we found that the cognitive deficits in SIRT1 knock-out (KO) mice were associated with defects in synaptic plasticity without alterations in basal synaptic transmission or NMDA receptor function. Brains of SIRT1-KO mice exhibited normal morphology and dendritic spine structure but displayed a decrease in dendritic branching, branch length, and complexity of neuronal dendritic arbors. Also, a decrease in extracellular signal-regulated kinase 1/2 phosphorylation and altered expression of hippocampal genes involved in synaptic function, lipid metabolism, and myelination were detected in SIRT1-KO mice. In contrast, mice with high levels of SIRT1 expression in brain exhibited regular synaptic plasticity and memory. We conclude that SIRT1 is indispensable for normal learning, memory, and synaptic plasticity in mice.


Assuntos
Cognição/fisiologia , Hipocampo/fisiologia , Aprendizagem/fisiologia , Potenciação de Longa Duração/genética , Memória/fisiologia , Neurônios/metabolismo , Sirtuína 1/genética , Animais , Espinhas Dendríticas/ultraestrutura , Regulação da Expressão Gênica , Hipocampo/citologia , Camundongos , Camundongos Knockout , Neurônios/química , Técnicas de Patch-Clamp , Sirtuína 1/análise , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA