Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Mil Med ; 189(3-4): e714-e720, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-37856171

RESUMO

INTRODUCTION: Vestibular/Ocular Motor Screening (VOMS) is often part of a comprehensive evaluation to identify acute mild traumatic brain injury. Most of the reports describe the use of the VOMS in adolescents/young adults and not in older adults or military service members. The purpose of this study was to describe VOMS findings in healthy civilians and active duty military service members up to the age of 50 years. MATERIALS AND METHODS: Seventy-seven healthy civilians between 18 and 50 years of age (22 males, age 31.8 [9.0] years) participated across three sites in addition to 40 healthy active duty service members (25 males, age 27.5 [4.9] years) from one site. Demographics, Neurobehavioral Symptom Inventory scores, mean near point convergence (NPC) distance, and Total Symptom Change (TSS) scores from the VOMS were evaluated. RESULTS: For civilians, the group mean NPC distance was 4.98 (3.8) cm. For military service members, the group mean NPC distance was 6.17 (4.57) cm. For civilians, the mean TSS was 1.2 (2.3) with 53.2% reporting 0 TSS, 27.3% reporting one TSS, and 19.5% reporting two or more TSS. For military service members, the mean TSS was 0.20 (0.72) with 92.5% reporting 0 TSS, 0% reporting one TSS, and 7.5% reporting two or more TSS. Age did not correlate with the mean NPC distance and TSS in healthy civilians and active duty military service members. CONCLUSIONS: Reconsideration of the Military Acute Concussion Evaluation, Version 2 cutoff value for abnormal mean NPC distance may be warranted to improve diagnostic accuracy in both civilian and military adult populations. Similarly, re-evaluating criteria for interpreting the TSS results of the VOMS, specifically in civilians, may be warranted.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Militares , Masculino , Adolescente , Adulto Jovem , Humanos , Idoso , Pessoa de Meia-Idade , Criança , Adulto , Concussão Encefálica/diagnóstico , Traumatismos em Atletas/diagnóstico
2.
J Neurol Phys Ther ; 47(2): 84-90, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36538333

RESUMO

BACKGROUND AND PURPOSE: The Functional Gait Assessment (FGA) and High Level Mobility Assessment Tool (HiMAT) are clinical batteries used to assess people with mild traumatic brain injury (mTBI). However, neither assessment was specifically developed for people with mTBI; the FGA was developed to evaluate vestibular deficits, and the HiMAT was developed for individuals with more severe TBI. To maximize the sensitivity and reduce the time burden of these assessments, the purpose of this study was to determine the combination of FGA and HiMAT items that best discriminates persons with persistent symptoms from mTBI from healthy controls. METHODS: Fifty-three symptomatic civilians with persistent symptoms from mTBI (21% male, aged 31 (9.5) years, 328 [267] days since concussion) and 57 healthy adults (28% male, aged 32 (9.6) years) participated across 3 sites. The FGA and HiMAT were evaluated sequentially as part of a larger study. To determine the best combination of items, a lasso-based generalized linear model (glm) was fit to all data. RESULTS: The area under the curve (AUC) for FGA and HiMAT total scores was 0.68 and 0.66, respectively. Lasso regression selected 4 items, including FGA Gait with Horizontal Head Turns and with Pivot Turn, and HiMAT Fast Forward and Backward Walk, and yielded an AUC (95% confidence interval) of 0.71 (0.61-0.79) using standard scoring. DISCUSSION AND CONCLUSIONS: The results provide initial evidence supporting a reduced, 4-Item Hybrid Assessment of Mobility for mTBI (HAM-4-mTBI) for monitoring individuals with mTBI. Future work should validate the HAM-4-mTBI and investigate its utility for tracking progression throughout rehabilitation.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A409 ).


Assuntos
Concussão Encefálica , Adulto , Humanos , Masculino , Feminino , Concussão Encefálica/diagnóstico , Marcha , Caminhada , Limitação da Mobilidade
3.
Gait Posture ; 100: 107-113, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36516644

RESUMO

PURPOSE: Measuring persistent imbalance after mTBI is challenging and may include subjective symptom-reporting as well as clinical scales. Clinical assessments for quantifying balance following mTBI have focused on sensory orientation. It is theorized that balance control goes beyond sensory orientation and also includes subdomains of anticipatory postural adjustments, reactive postural control, and dynamic gait. The Mini Balance Evaluation Systems Test (Mini-BESTest) is a validated balance test that measures balance according to these subdomains for a more comprehensive assessment. The purpose of this study was to compare Mini-BESTest total and subdomain scores after subacute mTBI with healthy controls. METHODS: Symptomatic mTBI (n = 90, 20 % male, age=36.0 ± 12.0, 46.3.4 ± 22.1 days since injury) and healthy control (n = 45, 20 % male, age=35.4 ± 12.5) participants completed the Mini-BESTest for balance. Mini-BESTest between-group differences were evaluated using Wilcoxon rank-sum tests. RESULTS: The mTBI group (Median[minimum,maximum]) had a significantly worse Mini-BESTest total score than the healthy controls (24[18,28] vs 27[23-28], p < 0.001). The mTBI group performed significantly worse in 3 of the 4 subdomains compared to the healthy controls: reactive postural control: 5[2-6] vs 6[3-6], p = 0.003; sensory orientation: 6[5,6] vs 6[6], p = 0.005; dynamic gait: 8[5-10] vs 9[8-10], p < 0.001. There was no significance difference between groups in the anticipatory postural adjustments domain (5[3-6] vs 5[3-6], p = 0.12). CONCLUSIONS: The Mini-BESTest identified deficits in people with subacute mTBI in the total score and 3 out of 4 subdomains, suggesting it may be helpful to use in the clinic to identify balance subdomain deficits in the subacute mTBI population. In combination with self-reported assessments, the mini-BESTest may identify balance domain deficits in the subacute mTBI population and help guide treatment for this population.


Assuntos
Concussão Encefálica , Humanos , Masculino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Feminino , Marcha , Equilíbrio Postural , Autorrelato , Avaliação da Deficiência , Reprodutibilidade dos Testes
4.
Mil Med ; 188(11-12): 3553-3560, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-35657326

RESUMO

INTRODUCTION: Balance deficits in people with chronic mild traumatic brain injury (mTBI; ≥3 months post-mTBI), thought to relate to central sensory integration deficits, are subtle and often difficult to detect. The purpose of this study was to determine the sensitivity of the instrumented modified clinical test of sensory integration for balance (mCTSIB) in identifying such balance deficits in people with symptomatic, chronic mTBI and to establish the associations between balance and mTBI symptom scores in the chronic mTBI group. METHODS: The Institutional Review Board approved these study methods. Forty-one people with chronic mTBI and balance complaints and 53 healthy controls performed the mCTSIB (eyes open/closed on firm/foam surfaces; EoFi, EcFi, EoFo, and EcFo) with a wearable sensor on their waist to quantify sway area (m2/s4). Sensory reweighting variables were calculated for the firm and foam stance conditions. A stopwatch provided the clinical outcome for the mCTSIB (time). Each participant completed the Neurobehavioral Symptom Inventory (NSI), which quantifies mTBI-related symptoms and provides a total score, as well as sub-scores on affective, cognitive, somatic, and vestibular domains. RESULTS: The mTBI group reported significantly higher symptom scores across each NSI sub-score (all Ps < .001). The mTBI group had a significantly larger sway area than the control group across all mCTSIB conditions and the mTBI group had significantly higher sensory reweighting scores compared to the control group on both the firm (P = .01) and foam (P = .04) surfaces. Within the mTBI group, the NSI vestibular score significantly related to the mCTSIB sway area EcFi (r = 0.38; P = .02), sway area EcFo (r = 0.43; P = .006), sensory reweighting firm (r = 0.33; P = .04), and sensory reweighting foam (r = 0.38; P = .02). The average sway area across the 4 mCTSIB conditions was significantly (area under the curve: 0.77; P < .001) better at differentiating groups than the mCTSIB clinical total score. The average sway area across the 4 mCTSIB conditions had a sensitivity of 73% and a specificity of 71%. The clinical mCTSIB outcome scores were not different between groups. CONCLUSION: People with chronic mTBI appear to have central sensory integration deficits detectable by instrumented measures of postural assessment. These findings suggest that central sensory integration should be targeted in rehabilitation for people with chronic mTBI.


Assuntos
Concussão Encefálica , Equilíbrio Postural , Humanos , Concussão Encefálica/complicações
5.
Front Neurol ; 13: 897454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341095

RESUMO

Imbalance is common following mild Traumatic Brain Injury (mTBI) and can persist months after the initial injury. To determine if mTBI subjects with chronic imbalance differed from healthy age- and sex-matched controls (HCs) we used both the Central SensoriMotor Integration (CSMI) test, which evaluates sensory integration, time delay, and motor activation properties and the standard Sensory Organization Test (SOT). Four CSMI conditions evoked center-of-mass sway in response to: surface tilts with eyes closed (SS/EC), surface tilts with eyes open viewing a fixed visual surround (SS/EO), visual surround tilts with eyes open standing on a fixed surface (VS/EO), and combined surface and visual tilts with eyes open (SS+VS/EO). The mTBI participants relied significantly more on visual cues during the VS/EO condition compared to HCs but had similar reliance on combinations of vestibular, visual, and proprioceptive cues for balance during SS/EC, SS/EO, and SS+VS/EO conditions. The mTBI participants had significantly longer time delays across all conditions and significantly decreased motor activation relative to HCs across conditions that included surface-tilt stimuli with a sizeable subgroup having a prominent increase in time delay coupled with reduced motor activation while demonstrating no vestibular sensory weighting deficits. Decreased motor activation compensates for increased time delay to maintain stability of the balance system but has the adverse consequence that sensitivity to both internal (e.g., sensory noise) and external disturbances is increased. Consistent with this increased sensitivity, SOT results for mTBI subjects showed increased sway across all SOT conditions relative to HCs with about 45% of mTBI subjects classified as having an "Aphysiologic" pattern based on published criteria. Thus, CSMI results provided a plausible physiological explanation for the aphysiologic SOT pattern. Overall results suggest that rehabilitation that focuses solely on sensory systems may be incomplete and may benefit from therapy aimed at enhancing rapid and vigorous responses to balance perturbations.

6.
Front Neurol ; 13: 926691, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267889

RESUMO

Complaints of non-resolving imbalance are common in individuals with chronic mild traumatic brain injury (mTBI). Vestibular rehabilitation therapy may be beneficial for this population. Additionally, wearable sensors can enable biofeedback, specifically audio biofeedback (ABF), and aid in retraining balance control mechanisms in people with balance impairments. In this study, we described the effectiveness of vestibular rehabilitation therapy with and without ABF to improve balance in people with chronic mTBI. Participants (n = 31; females = 22; mean age = 40.9 ± 11 y) with chronic (>3 months) mTBI symptoms of self-reported imbalance were randomized into vestibular rehabilitation with ABF (n = 16) or without ABF (n = 15). The intervention was a standard vestibular rehabilitation, with or without ABF, for 45 min biweekly for 6 weeks. The ABF intervention involved a smartphone that provided auditory feedback when postural sway was outside of predetermined equilibrium parameters. Participant's completed the Post-Concussion Symptom Scale (PCSS). Balance was assessed with the sensory organization test (SOT) and the Central Sensorimotor Integration test which measured sensory weighting, motor activation, and time delay with sway evoked by surface and/or visual surround tilts. Effect sizes (Hedge's G) were calculated on the change between pre-and post-rehabilitation scores. Both groups demonstrated similar medium effect-sized decreases in PCSS and large increases in SOT composite scores after rehabilitation. Effect sizes were minimal for increasing sensory weighting for both groups. The with ABF group showed a trend of larger effect sizes in increasing motor activation (with ABF = 0.75, without ABF = 0.22) and in decreasing time delay (with ABF = -0.77, without ABF = -0.52) relative to the without ABF group. Current clinical practice focuses primarily on sensory weighting. However, the evaluation and utilization of motor activation factors in vestibular rehabilitation, potentially with ABF, may provide a more complete assessment of recovery and improve outcomes.

7.
Gait Posture ; 96: 173-178, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35667229

RESUMO

BACKGROUND: Up to 40% of mild traumatic brain injuries (mTBI) can result in chronic unresolved symptoms, such as balance impairment, that persist beyond three months. Sensorimotor control, the collective coordination and regulation of both sensory and motor components of the postural control system, may underlie balance deficits in chronic mTBI. The aim of this study was to determine if the relationship between severity of impairment in chronic (> 3 months) mTBI and poorer balance performance was mediated by sensorimotor integration measures. METHODS: Data were collected from 61 healthy controls and 58 mTBI participants suffering persistent balance problems. Participants completed questionnaires (Dizziness Handicap Inventory (DHI), Neurobehavioral Symptom Inventory (NSI), and Sports Concussion Assessment Tool Symptom Questionnaire (SCAT2)) and performed instrumented postural sway assessments and a test of Central Sensory Motor Integration (CSMI). Exploratory Factor Analysis was used to reduce the variables used within the mediation models to constructs of impairment (Impairment Severity - based on questionnaires), balance (Sway Dispersion - based on instrumented postural sway measures), and sensorimotor control (Sensory Weighting, Motor Activation and Time Delay - based on parameters from CSMI tests). Mediation analyses used path analysis to estimate the direct effect (between impairment and balance) and indirect (mediating) effects (from sensorimotor control). RESULTS: Two out of three sensorimotor integration factors (Motor Activation and Time Delay) mediated the relationship between Impairment Severity and Sway Dispersion, however, there was no mediating effect of Sensory Weighting. SIGNIFICANCE: These findings have clinical implications since rehabilitation of balance commonly focuses on sensory cues. Our findings indicate the importance of Motor Activation and Time Delay, and thus a focus on strategies to improve factors related to these constructs throughout the rehabilitative process (i.e., level of muscular contractions to control joint torques; response time to stimuli/perturbations) may improve a patient's balance control.


Assuntos
Concussão Encefálica , Concussão Encefálica/diagnóstico , Tontura , Humanos , Equilíbrio Postural/fisiologia , Inquéritos e Questionários
8.
J Neuroeng Rehabil ; 19(1): 49, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35619112

RESUMO

BACKGROUND: Physical function remains a crucial component of mild traumatic brain injury (mTBI) assessment and recovery. Traditional approaches to assess mTBI lack sensitivity to detect subtle deficits post-injury, which can impact a patient's quality of life, daily function and can lead to chronic issues. Inertial measurement units (IMU) provide an opportunity for objective assessment of physical function and can be used in any environment. A single waist worn IMU has the potential to provide broad/macro quantity characteristics to estimate gait mobility, as well as more high-resolution micro spatial or temporal gait characteristics (herein, we refer to these as measures of quality). Our recent work showed that quantity measures of mobility were less sensitive than measures of turning quality when comparing the free-living physical function of chronic mTBI patients and healthy controls. However, no studies have examined whether measures of gait quality in free-living conditions can differentiate chronic mTBI patients and healthy controls. This study aimed to determine whether measures of free-living gait quality can differentiate chronic mTBI patients from controls. METHODS: Thirty-two patients with chronic self-reported balance symptoms after mTBI (age: 40.88 ± 11.78 years, median days post-injury: 440.68 days) and 23 healthy controls (age: 48.56 ± 22.56 years) were assessed for ~ 7 days using a single IMU at the waist on a belt. Free-living gait quality metrics were evaluated for chronic mTBI patients and controls using multi-variate analysis. Receiver operating characteristics (ROC) and Area Under the Curve (AUC) analysis were used to determine outcome sensitivity to chronic mTBI. RESULTS: Free-living gait quality metrics were not different between chronic mTBI patients and controls (all p > 0.05) whilst controlling for age and sex. ROC and AUC analysis showed stride length (0.63) was the most sensitive measure for differentiating chronic mTBI patients from controls. CONCLUSIONS: Our results show that gait quality metrics determined through a free-living assessment were not significantly different between chronic mTBI patients and controls. These results suggest that measures of free-living gait quality were not impaired in our chronic mTBI patients, and/or, that the metrics chosen were not sensitive enough to detect subtle impairments in our sample.


Assuntos
Concussão Encefálica , Adulto , Idoso , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico , Marcha , Humanos , Pessoa de Meia-Idade , Qualidade de Vida
9.
J Head Trauma Rehabil ; 37(5): E346-E354, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35067602

RESUMO

OBJECTIVE: The purpose of this study was to (1) explore differences in vestibular ocular motor screening (VOMS) symptoms between healthy adults and adults with persistent symptoms after mild traumatic brain injury (mTBI), and (2) explore the relationships between VOMS symptoms and other measures (self-reported vestibular symptoms, clinical measures of balance and gait, and higher-level motor ability tasks). SETTING: Research laboratory setting. PARTICIPANTS: Fifty-three persons with persistent symptoms (>3 weeks) following mTBI and 57 healthy controls were recruited. Eligibility for participation included being 18 to 50 years of age and free of medical conditions that may affect balance, with the exception of recent mTBI for the mTBI group. DESIGN: Cross-sectional. MAIN MEASURES: The primary outcomes were the VOMS symptom scores and near point of convergence (NPC) distance. Secondary outcomes included the Dizziness Handicap Inventory (DHI) total and subdomain scores, sway area, Functional Gait Analysis total score, gait speed, and modified Illinois Agility Task completion time, and Revised High-Level Mobility Assessment Tool total score. RESULTS: The mTBI group reported more VOMS symptoms ( z range, -7.28 to -7.89) and a further NPC ( t = -4.16) than healthy controls (all P s < .001). DHI self-reported symptoms (total and all subdomain scores) were strongly associated with the VOMS symptom scores (rho range, 0.53-0.68; all P s < .001). No significant relationships existed between VOMS symptoms and other measures. CONCLUSION: Significant group differences support the relevance of the VOMS for mTBI in an age-diverse sample with persistent symptoms. Furthermore, strong association with DHI symptoms supports the ability of the VOMS to capture vestibular complaints in this population.


Assuntos
Concussão Encefálica , Adulto , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico , Estudos Transversais , Tontura/diagnóstico , Tontura/etiologia , Humanos
10.
Front Bioeng Biotechnol ; 9: 701712, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805104

RESUMO

Background: Clinical and laboratory assessment of people with mild traumatic brain injury (mTBI) indicate impairments in eye movements. These tests are typically done in a static, seated position. Recently, the use of mobile eye-tracking systems has been proposed to quantify subtle deficits in eye movements and visual sampling during different tasks. However, the impact of mTBI on eye movements during functional tasks such as walking remains unknown. Objective: Evaluate differences in eye-tracking measures collected during gait between healthy controls (HC) and patients in the sub-acute stages of mTBI recovery and to determine if there are associations between eye-tracking measures and gait speed. Methods: Thirty-seven HC participants and 67individuals with mTBI were instructed to walk back and forth over 10-m, at a comfortable self-selected speed. A single 1-min trial was performed. Eye-tracking measures were recorded using a mobile eye-tracking system (head-mounted infra-red Tobbii Pro Glasses 2, 100 Hz, Tobii Technology Inc. VA, United States). Eye-tracking measures included saccadic (frequency, mean and peak velocity, duration and distance) and fixation measurements (frequency and duration). Gait was assessed using six inertial sensors (both feet, sternum, right wrist, lumbar vertebrae and the forehead) and gait velocity was selected as the primary outcome. General linear model was used to compare the groups and association between gait and eye-tracking outcomes were explored using partial correlations. Results: Individuals with mTBI showed significantly reduced saccade frequency (p = 0.016), duration (p = 0.028) and peak velocity (p = 0.032) compared to the HC group. No significant differences between groups were observed for the saccade distance, fixation measures and gait velocity (p > 0.05). A positive correlation was observed between saccade duration and gait velocity only for participants with mTBI (p = 0.025). Conclusion: Findings suggest impaired saccadic eye movement, but not fixations, during walking in individuals with mTBI. These findings have implications in real-world function including return to sport for athletes and return to duty for military service members. Future research should investigate whether or not saccade outcomes are influenced by the time after the trauma and rehabilitation.

11.
Gait Posture ; 90: 245-251, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34530311

RESUMO

BACKGROUND: Turning is a component of gait that requires planning for movement of multiple body segments and the sophisticated integration of sensory information from the vestibular, visual, and somatosensory systems. These aspects of turning have led to growing interest to quantify turning in clinical populations to characterize deficits or identify disease progression. However, turning may be affected by environmental differences, and the degree to which turning assessments are comparable across research or clinical sites has not yet been evaluated. RESEARCH QUESTION: The aim of this study was to determine the extent to which peak turning speeds are equivalent between two sites for a variety of mobility tasks. METHODS: Data were collected at two different sites using separate healthy young adult participants (n = 47 participants total), but recruited using identical inclusion and exclusion criteria. Participants at each site completed three turning tasks: a one-minute walk (1 MW) along a six-meter walkway, a modified Illinois Agility Test (mIAT), and a custom clinical turning course (CCTC). Peak yaw turning speeds were extracted from wearable inertial sensors on the head, trunk, and pelvis. Between-site differences and two one-sided tests (TOST) were used to determine equivalence between sites, based on a minimum effect size reported between individuals with mild traumatic brain injury and healthy control subjects. RESULTS: No outcomes were different between sites, and equivalence was determined for 6/21 of the outcomes. These findings suggest that some turning tasks and outcome measures may be better suited for multi-site studies. The equivalence results are also dependent on the minimum effect size of interest; nearly all outcomes were equivalent across sites when larger minimum effect sizes of interest were used. SIGNIFICANCE: Together, these results suggest some tasks and outcome measures may be better suited for multi-site studies and literature-based comparisons.


Assuntos
Concussão Encefálica , Caminhada , Marcha , Humanos , Movimento , Tronco , Adulto Jovem
12.
J Vestib Res ; 31(6): 519-530, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34024798

RESUMO

BACKGROUND: Little is known on the peripheral and central sensory contributions to persistent dizziness and imbalance following mild traumatic brain injury (mTBI). OBJECTIVE: To identify peripheral vestibular, central integrative, and oculomotor causes for chronic symptoms following mTBI. METHODS: Individuals with chronic mTBI symptoms and healthy controls (HC) completed a battery of oculomotor, peripheral vestibular and instrumented posturography evaluations and rated subjective symptoms on validated questionnaires. We defined abnormal oculomotor, peripheral vestibular, and central sensory integration for balance measures among mTBI participants as falling outside a 10-percentile cutoff determined from HC data. A X-squared test associated the proportion of normal and abnormal responses in each group. Partial Spearman's rank correlations evaluated the relationships between chronic symptoms and measures of oculomotor, peripheral vestibular, and central function for balance control. RESULTS: The mTBI group (n = 58) had more abnormal measures of central sensory integration for balance than the HC (n = 61) group (mTBI: 41% -61%; HC: 10%, p's < 0.001), but no differences on oculomotor and peripheral vestibular function (p > 0.113). Symptom severities were negatively correlated with central sensory integration for balance scores (p's < 0.048). CONCLUSIONS: Ongoing balance complaints in people with chronic mTBI are explained more by central sensory integration dysfunction rather than peripheral vestibular or oculomotor dysfunction.


Assuntos
Concussão Encefálica , Vestíbulo do Labirinto , Tontura/etiologia , Humanos , Equilíbrio Postural , Vertigem
13.
J Neurotrauma ; 38(2): 218-224, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32495691

RESUMO

There is a dearth of knowledge about how symptom severity affects gait in the chronic (>3 months) mild traumatic brain injury (mTBI) population despite up to 53% of people reporting persisting symptoms after mTBI. The aim of this investigation was to determine whether gait is affected in a symptomatic, chronic mTBI group and to assess the relationship between gait performance and symptom severity on the Neurobehavioral Symptom Inventory (NSI). Gait was assessed under single- and dual-task conditions using five inertial sensors in 57 control subjects and 65 persons with chronic mTBI (1.0 year from mTBI). The single- and dual-task gait domains of Pace, Rhythm, Variability, and Turning were calculated from individual gait characteristics. Dual-task cost (DTC) was calculated for each domain. The mTBI group walked (domain z-score mean difference, single-task = 0.70; dual-task = 0.71) and turned (z-score mean difference, single-task = 0.69; dual-task = 0.70) slower (p < 0.001) under both gait conditions, with less rhythm under dual-task gait (z-score difference = 0.21; p = 0.001). DTC was not different between groups. Higher NSI somatic subscore was related to higher single- and dual-task gait variability as well as slower dual-task pace and turning (p < 0.01). Persons with chronic mTBI and persistent symptoms exhibited altered gait, particularly under dual-task, and worse gait performance related to greater symptom severity. Future gait research in chronic mTBI should assess the possible underlying physiological mechanisms for persistent symptoms and gait deficits.


Assuntos
Concussão Encefálica/fisiopatologia , Lesão Encefálica Crônica/fisiopatologia , Marcha/fisiologia , Caminhada/fisiologia , Adulto , Feminino , Análise da Marcha , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
Artigo em Inglês | MEDLINE | ID: mdl-33345000

RESUMO

Mild traumatic brain injury (mTBI), or concussion, occurs following a direct or indirect force to the head that causes a change in brain function. Many neurological signs and symptoms of mTBI can be subtle and transient, and some can persist beyond the usual recovery timeframe, such as balance, cognitive or sensory disturbance that may pre-dispose to further injury in the future. There is currently no accepted definition or diagnostic criteria for mTBI and therefore no single assessment has been developed or accepted as being able to identify those with an mTBI. Eye-movement assessment may be useful, as specific eye-movements and their metrics can be attributed to specific brain regions or functions, and eye-movement involves a multitude of brain regions. Recently, research has focused on quantitative eye-movement assessments using eye-tracking technology for diagnosis and monitoring symptoms of an mTBI. However, the approaches taken to objectively measure eye-movements varies with respect to instrumentation, protocols and recognition of factors that may influence results, such as cognitive function or basic visual function. This review aimed to examine previous work that has measured eye-movements within those with mTBI to inform the development of robust or standardized testing protocols. Medline/PubMed, CINAHL, PsychInfo and Scopus databases were searched. Twenty-two articles met inclusion/exclusion criteria and were reviewed, which examined saccades, smooth pursuits, fixations and nystagmus in mTBI compared to controls. Current methodologies for data collection, analysis and interpretation from eye-tracking technology in individuals following an mTBI are discussed. In brief, a wide range of eye-movement instruments and outcome measures were reported, but validity and reliability of devices and metrics were insufficiently reported across studies. Interpretation of outcomes was complicated by poor study reporting of demographics, mTBI-related features (e.g., time since injury), and few studies considered the influence that cognitive or visual functions may have on eye-movements. The reviewed evidence suggests that eye-movements are impaired in mTBI, but future research is required to accurately and robustly establish findings. Standardization and reporting of eye-movement instruments, data collection procedures, processing algorithms and analysis methods are required. Recommendations also include comprehensive reporting of demographics, mTBI-related features, and confounding variables.

15.
J Biomech ; 112: 110045, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33011672

RESUMO

Increased postural sway is often observed in people with mild traumatic brain injury (mTBI), but our understanding of how individuals with mTBI control their head during stance is limited. The purpose of this study was to determine if people with mTBI exhibit increased sway at the head compared with healthy controls. People with persisting symptoms after mTBI (n = 59, 41 women) and control participants (n = 63, 38 women) stood quietly for one minute in four conditions: eyes open on a firm surface (EO-firm), eyes closed on a firm surface (EC-firm), eyes open on a foam pad (EO-foam), and eyes closed on foam (EC-foam). Inertial sensors at the head, sternum, and lumbar region collected tri-axial accelerations. Root-mean-square (RMS) accelerations in anteroposterior (AP) and mediolateral (ML) directions and sway ratios between the head and sternum, head and lumbar, and sternum and lumbar region were compared between groups. Temporal coupling of anti-phase motion between the upper and lower body angular accelerations was assessed with magnitude squared coherence and cross-spectral phase angles. People with mTBI demonstrated greater sway than controls across conditions and directions. During foam-surface conditions, the control group, but not the mTBI group, reduced ML sway at their head and trunk relative to their lumbar by increasing the expression of an anti-phase hip strategy within the frontal plane. These results are consistent with suggestions of inflexible or inappropriate postural control in people with mTBI.


Assuntos
Concussão Encefálica , Aceleração , Feminino , Humanos , Movimento (Física) , Equilíbrio Postural , Posição Ortostática
16.
Phys Ther ; 100(4): 687-697, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-31951263

RESUMO

BACKGROUND: Clinical practice for rehabilitation after mild traumatic brain injury (mTBI) is variable, and guidance on when to initiate physical therapy is lacking. Wearable sensor technology may aid clinical assessment, performance monitoring, and exercise adherence, potentially improving rehabilitation outcomes during unsupervised home exercise programs. OBJECTIVE: The objectives of this study were to: (1) determine whether initiating rehabilitation earlier than typical will improve outcomes after mTBI, and (2) examine whether using wearable sensors during a home-exercise program will improve outcomes in participants with mTBI. DESIGN: This was a randomized controlled trial. SETTING: This study will take place within an academic hospital setting at Oregon Health & Science University and Veterans Affairs Portland Health Care System, and in the home environment. PARTICIPANTS: This study will include 160 individuals with mTBI. INTERVENTION: The early intervention group (n = 80) will receive one-on-one physical therapy 8 times over 6 weeks and complete daily home exercises. The standard care group (n = 80) will complete the same intervention after a 6- to 8-week wait period. One-half of each group will receive wearable sensors for therapist monitoring of patient adherence and quality of movements during their home exercise program. MEASUREMENTS: The primary outcome measure will be the Dizziness Handicap Inventory score. Secondary outcome measures will include symptomatology, static and dynamic postural control, central sensorimotor integration posturography, and vestibular-ocular-motor function. LIMITATIONS: Potential limitations include variable onset of care, a wide range of ages, possible low adherence and/or withdrawal from the study in the standard of care group, and low Dizziness Handicap Inventory scores effecting ceiling for change after rehabilitation. CONCLUSIONS: If initiating rehabilitation earlier improves primary and secondary outcomes post-mTBI, this could help shape current clinical care guidelines for rehabilitation. Additionally, using wearable sensors to monitor performance and adherence may improve home exercise outcomes.


Assuntos
Concussão Encefálica/reabilitação , Terapia por Exercício/métodos , Serviços de Assistência Domiciliar , Ensaios Clínicos Controlados Aleatórios como Assunto , Dispositivos Eletrônicos Vestíveis , Adulto , Assistência Ambulatorial/métodos , Humanos , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Tamanho da Amostra , Fatores de Tempo , Resultado do Tratamento
17.
Front Neurol ; 11: 544812, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519659

RESUMO

Determining readiness for duty after mild traumatic brain injury (mTBI) is essential for the safety of service members and their unit. Currently, these decisions are primarily based on self-reported symptoms, objective measures that assess a single system, or standardized physical or cognitive tests that may be insensitive or lack ecological validity for warrior tasks. While significant technological advancements have been made in a variety of assessments of these individual systems, assessments of isolated tasks are neither diagnostically accurate nor representative of the demands imposed by daily life and military activities. Emerging evidence suggests that complex tasks, such as dual-task paradigms or turning, have utility in probing functional deficits after mTBI. Objective measures from turning tasks in single- or dual-task conditions, therefore, may be highly valuable for clinical assessments and return-to-duty decisions after mTBI. The goals of this study are to assess the diagnostic accuracy, predictive capacity, and responsiveness to rehabilitation of objective, dual-task turning measures within an mTBI population. These goals will be accomplished over two phases. Phase 1 will enroll civilians at three sites and active-duty service members at one site to examine the diagnostic accuracy and predictive capacity of dual-task turning outcomes. Phase 1 participants will complete a series of turning tasks while wearing inertial sensors and a battery of clinical questionnaires, neurocognitive testing, and standard clinical assessments of function. Phase 2 will enroll active-duty service members referred for rehabilitation from two military medical treatment facilities to investigate the responsiveness to rehabilitation of objective dual-task turning measures. Phase 2 participants will complete two assessments of turning while wearing inertial sensors: a baseline assessment prior to the first rehabilitation session and a post-rehabilitation assessment after the physical therapist determines the participant has completed his/her rehabilitation course. A variable selection procedure will then be implemented to determine the best task and outcome measure for return-to-duty decisions based on diagnostic accuracy, predictive capacity, and responsiveness to rehabilitation. Overall, the results of this study will provide guidance and potential new tools for clinical decisions in individuals with mTBI. Clinical Trial Registration: clinicaltrials.gov, Identifier NCT03892291.

18.
J Neurotrauma ; 37(1): 139-145, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31354032

RESUMO

Balance and mobility issues are common non-resolving symptoms following mild traumatic brain injury (mTBI). Current approaches for evaluating balance and mobility following an mTBI can be subjective and suboptimal as they may not be sensitive to subtle deficits, particularly in those with chronic mTBI. Wearable inertial measurement units (IMU) allow objective quantification of continuous mobility outcomes in natural free-living environments. This study aimed to explore free-living mobility (physical activity and turning) of healthy and chronic mild traumatic brain injury (mTBI) participants using a single IMU. Free-living mobility was examined in 23 healthy control (48.56 ± 23.07 years) and 29 symptomatic mTBI (40.2 ± 12.1 years) participants (average 419 days post-injury, persistent balance complaints) over 1 week, using a single IMU placed at the waist. Free-living mobility was characterized in terms of macro (physical activity volume, pattern and variability) and micro-level (discrete measures of turning) features. Macro-level outcomes showed those with chronic mTBI had similar quantities of mobility compared with controls. Micro-level outcomes within walking bouts showed that chronic mTBI participants had impaired quality of mobility. Specifically, people with chronic mTBI made larger turns, had longer turning durations, slower average and peak velocities (all p < 0.001), and greater turn variability compared with controls. Results highlighted that the quality rather than quantity of mobility differentiated chronic mTBI from controls. Our findings support the use of free-living IMU continuous monitoring to enhance understanding of specific chronic mTBI-related mobility deficits. Future work is required to develop an optimal battery of free-living measures across the mTBI spectrum to aid application within clinical practice.


Assuntos
Acelerometria/instrumentação , Concussão Encefálica/complicações , Limitação da Mobilidade , Transtornos de Sensação/diagnóstico , Dispositivos Eletrônicos Vestíveis , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Equilíbrio Postural , Transtornos de Sensação/etiologia
19.
Hum Mov Sci ; 69: 102557, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31783306

RESUMO

INTRODUCTION: Mild traumatic brain injury (mTBI) can impact gait, with deficits linked to underlying neural disturbances in cognitive, motor and sensory systems. Gait is complex as it is comprised of multiple characteristics that are sensitive to underlying neural deficits. However, there is currently no clear framework to guide selection of gait characteristics in mTBI. This study developed a model of gait in chronic mTBI and replicated this in a separate group of controls, to provide a comprehensive and structured methodology on which to base gait assessment and analysis. METHODS: Fifty-two people with chronic mTBI and 59 controls completed a controlled laboratory gait assessment; walking for two minutes back and forth over a 13 m distance while wearing five wirelessly synchronized inertial sensors. Thirteen gait characteristics derived from the inertial sensors were selected for entry into the principle component analysis based on previous literature, robustness and novelty. Principle component analysis was then used to derive domains (components) of gait. RESULTS: Four gait domains were derived for our chronic mTBI group (variability, rhythm, pace and turning) and this was replicated in a separate control cohort. Domains totaled 80.8% and 77.4% of variance in gait for chronic mTBI and controls, respectively. Gait characteristic loading was unambiguous for all features, with the exception of gait speed in controls that loaded on pace and rhythm domains. CONCLUSION: This study contributes a four component model of gait in chronic mTBI and controls that can be used to comprehensively assess and analyze gait and underlying mechanisms involved in impairment, or examine the influence of interventions.


Assuntos
Concussão Encefálica/fisiopatologia , Marcha , Velocidade de Caminhada , Adulto , Doença Crônica , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Physiol Meas ; 40(4): 044006, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30943463

RESUMO

OBJECTIVE: Saccadic (fast) eye movements are a routine aspect of neurological examination and are a potential biomarker of mild traumatic brain injury (mTBI). Objective measurement of saccades has become a prominent focus of mTBI research, as eye movements may be a useful assessment tool for deficits in neural structures or processes. However, saccadic measurement within mobile infra-red (IR) eye-tracker raw data requires a valid algorithm. The objective of this study was to validate a velocity-based algorithm for saccade detection in IR eye-tracking raw data during walking (straight ahead and while turning) in people with mTBI and healthy controls. APPROACH: Eye-tracking via a mobile IR Tobii Pro Glasses 2 eye-tracker (100 Hz) was performed in people with mTBI (n = 10) and healthy controls (n = 10). Participants completed two walking tasks: straight walking (walking back and forth for 1 min over a 10 m distance), and walking and turning (turns course included 45°, 90° and 135° turns). Five trials per subject, for one-hundred total trials, were completed. A previously reported velocity-based saccade detection algorithm was adapted and validated by assessing agreement between algorithm saccade detections and the number of correct saccade detections determined from manual video inspection (ground truth reference). MAIN RESULTS: Compared with video inspection, the IR algorithm detected ~97% (n = 4888) and ~95% (n = 3699) of saccades made by people with mTBI and controls, respectively, with excellent agreement to the ground truth (intra-class correlation coefficient2,1 = .979 to .999). SIGNIFICANCE: This study provides a simple yet highly robust algorithm for the processing of mobile eye-tracker raw data in mTBI and controls. Future studies may consider validating this algorithm with other IR eye-trackers and populations.


Assuntos
Algoritmos , Concussão Encefálica/fisiopatologia , Movimentos Sacádicos , Caminhada/fisiologia , Adulto , Estudos de Casos e Controles , Feminino , Fixação Ocular , Humanos , Masculino , Processamento de Sinais Assistido por Computador , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA