Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurophotonics ; 11(2): 025006, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38868631

RESUMO

Significance: We assess the feasibility of using diffuse reflectance spectroscopy (DRS) and coherent anti-Stokes Raman scattering spectroscopy (CARS) as optical tools for human brain tissue identification during deep brain stimulation (DBS) lead insertion, thereby providing a promising avenue for additional real-time neurosurgical guidance. Aim: We developed a system that can acquire CARS and DRS spectra during the DBS surgery procedure to identify the tissue composition along the lead trajectory. Approach: DRS and CARS spectra were acquired using a custom-built optical probe integrated in a commercial DBS lead. The lead was inserted to target three specific regions in each of the brain hemispheres of a human cadaver. Spectra were acquired during the lead insertion at constant position increments. Spectra were analyzed to classify each spectrum as being from white matter (WM) or gray matter (GM). The results were compared with tissue classification performed on histological brain sections. Results: DRS and CARS spectra obtained using the optical probe can identify WM and GM during DBS lead insertion. The tissue composition along the trajectory toward a specific target is unique and can be differentiated by the optical probe. Moreover, the results obtained with principal component analysis suggest that DRS might be able to detect the presence of blood due to the strong optical absorption of hemoglobin. Conclusions: It is possible to use optical measurements from the DBS lead during surgery to identify WM and GM and possibly the presence of blood in human brain tissue. The proposed optical tool could inform the surgeon during the lead placement if the lead has reached the target as planned. Our tool could eventually replace microelectrode recordings, which would streamline the process and reduce surgery time. Further developments are required to fully integrate these tools into standard clinical procedures.

2.
Appl Spectrosc ; 76(3): 361-368, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35148656

RESUMO

Mineral characterization using tunable external cavity quantum cascade lasers for mid-infrared reflectance spectroscopy is presented. Reflection spectra taken on common minerals are shown along with their spectral variations. Measurements at different incident angles were also obtained to mimic in the field applications. Finally, spectra were obtained on mineral mixtures and their analysis assesses the quality and usability of the technique for mineral characterization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA