Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39345606

RESUMO

Extracellular vesicles (EVs) mediate intercellular communication by carrying molecular cargo that facilitate diverse physiological processes. Macrophages, playing central roles in immune responses, release EVs that modulate various cellular functions. Given the distinct roles of M1 and M2 macrophage states, understanding the proteomic profiles of their EVs is important for elucidation of EV-mediated signalling and identifying potential biomarkers for diseases involving macrophage polarisation. We employed quantitative proteomics combined with bioinformatics to characterise the proteomic profile of EVs released by M1 and M2 monocyte-derived macrophages. We identified 1,731 proteins in M1/M2 EVs, 132 of which were significantly differentially between M1 and M2. Proteomic data, together with pathway analysis, found that M1/M2 macrophage EV cargo relate to cellular source, and may play roles in shaping immune responses, with M1 EV cargo associated with promotion of pro-inflammatory and antiviral functions, while M2 EV cargo associated with immune regulation and tissue repair. M1 EV cargo was associated with cytokine/chemokine signalling pathways, DNA damage, methylation, and oxidative stress. M2 EV cargo were associated with macrophage alternative-activation signalling pathways, antigen presentation, and lipid metabolism. We also report that macrophage EVs carry metallothioneins, and other related proteins involved in response to metals and oxidative stress.

2.
Mol Cell ; 84(15): 2870-2881.e5, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39013473

RESUMO

The human silencing hub (HUSH) preserves genome integrity through the epigenetic repression of invasive genetic elements. However, despite our understanding of HUSH as an obligate complex of three subunits, only loss of MPP8 or Periphilin, but not TASOR, triggers interferon signaling following derepression of endogenous retroelements. Here, we resolve this paradox by characterizing a second HUSH complex that shares MPP8 and Periphilin but assembles around TASOR2, an uncharacterized paralog of TASOR. Whereas HUSH represses LINE-1 retroelements marked by the repressive histone modification H3K9me3, HUSH2 is recruited by the transcription factor IRF2 to repress interferon-stimulated genes. Mechanistically, HUSH-mediated retroelement silencing sequesters the limited pool of the shared subunits MPP8 and Periphilin, preventing TASOR2 from forming HUSH2 complexes and hence relieving the HUSH2-mediated repression of interferon-stimulated genes. Thus, competition between two HUSH complexes intertwines retroelement silencing with the induction of an immune response, coupling epigenetic and immune aspects of genome defense.


Assuntos
Inativação Gênica , Humanos , Células HEK293 , Histonas/metabolismo , Histonas/genética , Retroelementos/genética , Epigênese Genética , Elementos Nucleotídeos Longos e Dispersos/genética , Transdução de Sinais , Interferons/metabolismo , Interferons/imunologia , Interferons/genética , Células HeLa
3.
Methods Mol Biol ; 2772: 115-127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38411809

RESUMO

Free-flow electrophoresis (FFE) is a technique for separation of proteins, peptides, organelles, and cells. With zone electrophoresis (ZE-FFE), organelles are separated according to surface charge. The ER is the only remaining major cellular compartment in Arabidopsis not to have been isolated using density centrifugation, immune-isolation, or any other method previously applied to purification of plant membranes. By using continuous-flow electrophoresis, ER vesicles of similar surface charge, which may have been fragmented during cell lysis, can be focused. A large portion of these vesicles are of sufficiently different surface charge that separation from the majority of Golgi and other contaminants is possible. Here we adapt an earlier ZE-FFE Golgi isolation protocol for the isolation of highly pure ER vesicles and for tracking the migration of peripheral ER vesicles. Isolating ER vesicles of homogeneous surface charge allows multi-omic analyses to be performed on the ER. This facilitates investigations into structure-function relationships within the ER.


Assuntos
Arabidopsis , Retículo Endoplasmático , Morte Celular , Centrifugação , Eletroforese
4.
Cell Rep ; 42(6): 112613, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37302069

RESUMO

Certain serum proteins, including C-reactive protein (CRP) and D-dimer, have prognostic value in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nonetheless, these factors are non-specific, providing limited mechanistic insight into the peripheral blood mononuclear cell (PBMC) populations that drive the pathogenesis of severe COVID-19. To identify cellular phenotypes associated with disease, we performed a comprehensive, unbiased analysis of total and plasma-membrane PBMC proteomes from 40 unvaccinated individuals with SARS-CoV-2, spanning the whole disease spectrum. Combined with RNA sequencing (RNA-seq) and flow cytometry from the same donors, we define a comprehensive multi-omic profile for each severity level, revealing that immune-cell dysregulation progresses with increasing disease. The cell-surface proteins CEACAMs1, 6, and 8, CD177, CD63, and CD89 are strongly associated with severe COVID-19, corresponding to the emergence of atypical CD3+CD4+CEACAM1/6/8+CD177+CD63+CD89+ and CD16+CEACAM1/6/8+ mononuclear cells. Utilization of these markers may facilitate real-time patient assessment by flow cytometry and identify immune populations that could be targeted to ameliorate immunopathology.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Leucócitos Mononucleares , Proteômica , Fenótipo
5.
J Clin Med ; 10(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34362170

RESUMO

Irish society went into one of the most stringent lockdowns in March 2020 due to the COVID-19 pandemic, and barring a few weeks, remains highly restricted at time of writing. This has produced a wide range of challenges for those affected by eating disorders, as well as treatment services and Bodywhys, The Eating Disorders Association of Ireland. Current research indicates that COVID-19 has impacted across three key areas-the experience of those with an eating disorder, the experience of service provision, and the impact on the family situation. Drawing on monitoring and evaluation data gathered by Bodywhys, this paper details the challenges faced by those affected by eating disorders in Ireland and how the organisation responded to these challenges, providing support in various forms to people with eating disorders and their families.

6.
Plant Cell ; 31(9): 2010-2034, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31266899

RESUMO

The order of enzymatic activity across Golgi cisternae is essential for complex molecule biosynthesis. However, an inability to separate Golgi cisternae has meant that the cisternal distribution of most resident proteins, and their underlying localization mechanisms, are unknown. Here, we exploit differences in surface charge of intact cisternae to perform separation of early to late Golgi subcompartments. We determine protein and glycan abundance profiles across the Golgi; over 390 resident proteins are identified, including 136 new additions, with over 180 cisternal assignments. These assignments provide a means to better understand the functional roles of Golgi proteins and how they operate sequentially. Protein and glycan distributions are validated in vivo using high-resolution microscopy. Results reveal distinct functional compartmentalization among resident Golgi proteins. Analysis of transmembrane proteins shows several sequence-based characteristics relating to pI, hydrophobicity, Ser abundance, and Phe bilayer asymmetry that change across the Golgi. Overall, our results suggest that a continuum of transmembrane features, rather than discrete rules, guide proteins to earlier or later locations within the Golgi stack.


Assuntos
Complexo de Golgi/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Complexo de Golgi/ultraestrutura , Interações Hidrofóbicas e Hidrofílicas , Membranas Intracelulares , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Proteoma
7.
Front Plant Sci ; 9: 1626, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30467512

RESUMO

Ethylene, the plant ripening hormone of climacteric fruit, is perceived by ethylene receptors which is the first step in the complex ethylene signal transduction pathway. Much progress has been made in elucidating the mechanism of this pathway, but there is still a lot to be done in the proteomic quantification of the main proteins involved, particularly during fruit ripening. This work focuses on the mass spectrometry based identification and quantification of the ethylene receptors (ETRs) and the downstream components of the pathway, CTR-like proteins (CTRs) and ETHYLENE INSENSITIVE 2 (EIN2). We used tomato as a model fruit to study changes in protein abundance involved in the ethylene signal transduction during fruit ripening. In order to detect and quantify these low abundant proteins located in the membrane of the endoplasmic reticulum, we developed a workflow comprising sample fractionation and MS analysis using parallel reaction monitoring. This work shows the feasibility of the identification and absolute quantification of all seven ethylene receptors, three out of four CTRs and EIN2 in four ripening stages of tomato. In parallel, gene expression was analyzed through real-time qPCR. Correlation between transcriptomic and proteomic profiles during ripening was only observed for three of the studied proteins, suggesting that the other signaling proteins are likely post-transcriptionally regulated. Based on our quantification results we were able to show that the protein levels of SlETR3 and SlETR4 increased during ripening, probably to control ethylene sensitivity. The other receptors and CTRs showed either stable levels that could sustain, or decreasing levels that could promote fruit ripening.

8.
Semin Cell Dev Biol ; 80: 123-132, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29042236

RESUMO

Intracellular proteins reside in highly controlled microenvironments in which they perform context specific functions. Trafficking pathways have evolved that enable proteins to be precisely delivered to the correct location but also to re-locate in response to environmental perturbation. Trafficking of membrane proteins to their correct endomembrane location is especially important to enable them to carry out their function. Although a considerable amount of knowledge about membrane protein trafficking in plants has been delivered by years of dedicated research, there are still significant gaps in our understanding of this process. Further knowledge of endomembrane trafficking is dependent on thorough characterization of the subcellular components that constitute the endomembrane system. Such studies are challenging for a number of reasons including the complexity of the plant endomembrane system, inability to purify individual constituents, discrimination protein cargo for full time residents of compartments, and the fact that many proteins function at more than one location. In this review, we describe the components of the secretory pathway and focus on how mass spectrometry based proteomics methods have helped elucidation of this pathway. We demonstrate that the combination of targeted and untargeted approaches is allowing research into new areas of the secretory pathway investigation. Finally we describe new enabling technologies that will impact future studies in this area.


Assuntos
Membrana Celular/metabolismo , Endocitose/fisiologia , Espectrometria de Massas , Transporte Proteico/fisiologia , Via Secretória/fisiologia , Espectrometria de Massas/métodos , Proteínas de Membrana/metabolismo , Plantas
9.
Methods Mol Biol ; 1691: 103-115, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29043672

RESUMO

Free-flow electrophoresis (FFE) is a technique for separation of proteins, peptides, organelles, and cells. With zone electrophoresis (ZE-FFE), organelles are separated according to surface charge. The ER is the only remaining major cellular compartment in Arabidopsis not to have been isolated using density centrifugation, immune-isolation, or any other method previously applied to purification of plant membranes. By using continuous-flow electrophoresis ER vesicles of similar surface charge, which may have been fragmented during cell lysis, can be focused. A large portion of these vesicles are of sufficiently different surface charge that separation from the majority of Golgi and other contaminants is possible. Here we adapt an earlier ZE-FFE Golgi isolation protocol for the isolation of highly pure ER vesicles and for tracking the migration of peripheral ER vesicles. Isolating ER vesicles of homogenous surface charge allows multi-'omic analyses to be performed on the ER. This facilitates investigations into structure-function relationships within the ER.


Assuntos
Eletroforese , Retículo Endoplasmático , Membranas Intracelulares , Arabidopsis/metabolismo , Eletroforese/métodos , Retículo Endoplasmático/metabolismo , Espectrometria de Massas , Células Vegetais , Proteoma , Proteômica/métodos
10.
Plant J ; 92(6): 1202-1217, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29024340

RESUMO

Measuring changes in protein or organelle abundance in the cell is an essential, but challenging aspect of cell biology. Frequently-used methods for determining organelle abundance typically rely on detection of a very few marker proteins, so are unsatisfactory. In silico estimates of protein abundances from publicly available protein spectra can provide useful standard abundance values but contain only data from tissue proteomes, and are not coupled to organelle localization data. A new protein abundance score, the normalized protein abundance scale (NPAS), expands on the number of scored proteins and the scoring accuracy of lower-abundance proteins in Arabidopsis. NPAS was combined with subcellular protein localization data, facilitating quantitative estimations of organelle abundance during routine experimental procedures. A suite of targeted proteomics markers for subcellular compartment markers was developed, enabling independent verification of in silico estimates for relative organelle abundance. Estimation of relative organelle abundance was found to be reproducible and consistent over a range of tissues and growth conditions. In silico abundance estimations and localization data have been combined into an online tool, multiple marker abundance profiling, available in the SUBA4 toolbox (http://suba.live).


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteoma , Proteômica , Biomarcadores/metabolismo , Organelas/metabolismo , Transporte Proteico
11.
Proteomics ; 17(21)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28922568

RESUMO

Quantitative proteomics methods have emerged as powerful tools for measuring protein expression changes at the proteome level. Using MS-based approaches, it is now possible to routinely quantify thousands of proteins. However, prefractionation of the samples at the protein or peptide level is usually necessary to go deep into the proteome, increasing both MS analysis time and technical variability. Recently, a new MS acquisition method named SWATH is introduced with the potential to provide good coverage of the proteome as well as a good measurement precision without prior sample fractionation. In contrast to shotgun-based MS however, a library containing experimental acquired spectra is necessary for the bioinformatics analysis of SWATH data. In this study, spectral libraries for two widely used models are built to study crop ripening or animal embryogenesis, Solanum lycopersicum (tomato) and Drosophila melanogaster, respectively. The spectral libraries comprise fragments for 5197 and 6040 proteins for S. lycopersicum and D. melanogaster, respectively, and allow reproducible quantification for thousands of peptides per MS analysis. The spectral libraries and all MS data are available in the MassIVE repository with the dataset identifiers MSV000081074 and MSV000081075 and the PRIDE repository with the dataset identifiers PXD006493 and PXD006495.


Assuntos
Drosophila melanogaster/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Solanum lycopersicum/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Biblioteca de Peptídeos , Padrões de Referência
13.
Sci Rep ; 7: 45341, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28358137

RESUMO

Extensins are plant cell wall glycoproteins that act as scaffolds for the deposition of the main wall carbohydrate polymers, which are interlocked into the supramolecular wall structure through intra- and inter-molecular iso-di-tyrosine crosslinks within the extensin backbone. In the conserved canonical extensin repeat, Ser-Hyp4, serine and the consecutive C4-hydroxyprolines (Hyps) are substituted with an α-galactose and 1-5 ß- or α-linked arabinofuranoses (Arafs), respectively. These modifications are required for correct extended structure and function of the extensin network. Here, we identified a single Arabidopsis thaliana gene, At3g57630, in clade E of the inverting Glycosyltransferase family GT47 as a candidate for the transfer of Araf to Hyp-arabinofuranotriose (Hyp-ß1,4Araf-ß1,2Araf-ß1,2Araf) side chains in an α-linkage, to yield Hyp-Araf4 which is exclusively found in extensins. T-DNA knock-out mutants of At3g57630 showed a truncated root hair phenotype, as seen for mutants of all hitherto characterized extensin glycosylation enzymes; both root hair and glycan phenotypes were restored upon reintroduction of At3g57630. At3g57630 was named Extensin Arabinose Deficient transferase, ExAD, accordingly. The occurrence of ExAD orthologs within the Viridiplantae along with its' product, Hyp-Araf4, point to ExAD being an evolutionary hallmark of terrestrial plants and charophyte green algae.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Mutação , Raízes de Plantas/anatomia & histologia , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabinose/metabolismo , Parede Celular/enzimologia , Parede Celular/genética , DNA Bacteriano/genética , DNA Bacteriano/farmacologia , Evolução Molecular , Técnicas de Inativação de Genes , Glicosilação , Xilosidases/genética , Xilosidases/metabolismo
14.
Proteomics ; 17(1-2)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27957804

RESUMO

Since the genome of Solanum lycopersicum L. was published in 2012, some studies have explored its proteome although with a limited depth. In this work, we present an extended characterization of the proteome of the tomato pericarp at its ripe red stage. Fractionation of tryptic peptides generated from pericarp proteins by off-line high-pH reverse-phase phase chromatography in combination with LC-MS/MS analysis on a Fisher Scientific Q Exactive and a Sciex Triple-TOF 6600 resulted in the identification of 8588 proteins with a 1% FDR both at the peptide and protein levels. Proteins were mapped through GO and KEGG databases and a large number of the identified proteins were associated with cytoplasmic organelles and metabolic pathways categories. These results constitute one of the most extensive proteome datasets of tomato so far and provide an experimental confirmation of the existence of a high number of theoretically predicted proteins. All MS data are available in the ProteomeXchange repository with the dataset identifiers PXD004947 and PXD004932.


Assuntos
Frutas/metabolismo , Proteoma/metabolismo , Solanum lycopersicum/metabolismo , Cromatografia Líquida , Proteínas de Plantas/metabolismo , Proteômica , Espectrometria de Massas em Tandem
15.
Methods Mol Biol ; 1511: 131-150, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27730608

RESUMO

The Golgi apparatus is an essential component in the plant secretory pathway. The enrichment of Golgi membranes from plant tissue is fundamental to the study of this structurally complex organelle. The utilization of density centrifugation for the enrichment of Golgi membranes is still the most widely employed isolation technique. Generally, the procedure requires optimization depending on the plant tissue being employed. Here we provide a detailed enrichment procedure that has previously been used to characterize cell wall biosynthetic complexes from wheat seedlings. We also outline several downstream analyses procedures, including nucleoside diphosphatase assays, immunoblotting, and finally localization of putative Golgi proteins by fluorescent tags.


Assuntos
Proteínas de Transporte/isolamento & purificação , Fracionamento Celular/métodos , Complexo de Golgi/química , Proteínas de Plantas/isolamento & purificação , Plântula/química , Triticum/química , Hidrolases Anidrido Ácido/química , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Western Blotting , Proteínas de Transporte/química , Fracionamento Celular/instrumentação , Centrifugação com Gradiente de Concentração/instrumentação , Centrifugação com Gradiente de Concentração/métodos , Meios de Cultura/química , Eletroporação/métodos , Ensaios Enzimáticos , Corantes Fluorescentes/química , Membranas Intracelulares/química , Microssomos/química , Proteínas de Plantas/química , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Sacarose/química , Transformação Genética , Triticum/crescimento & desenvolvimento , Ultracentrifugação/instrumentação , Ultracentrifugação/métodos
16.
Br J Soc Psychol ; 55(4): 662-680, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27667140

RESUMO

Retention of a positively valued illness identity contributes to poor outcomes for individuals with eating disorders (EDs). Consequently, dis-identification from the illness identity and the adoption of a recovery identity are vital for successful recovery. While social identity processes have been shown to influence ED maintenance, their role in recovery is rarely considered. This study explores how a sense of shared identity helps individuals with EDs manage their condition and promotes recovery. Transcripts from 18 online support sessions involving 75 participants were thematically analysed. Our findings suggest that the illness identity initially operates as a social identity that forms the basis for connections with similar others. For those wishing to recover, identity-based support is then perceived to be more effective than that found outside the group. Online interactions also facilitate construction of a new shared recovery identity which promotes a shift from the illness identity as a primary source of definition and endorses group norms of illness disclosure and treatment engagement. While in the clinical literature, ED identity is seen as problematic and interventions are targeted at challenging an individual's self-concept, we suggest that interventions could instead harness identity resources to support a transition to a recovery identity.


Assuntos
Atitude Frente a Saúde , Transtornos da Alimentação e da Ingestão de Alimentos/psicologia , Grupos de Autoajuda , Identificação Social , Adulto , Transtornos da Alimentação e da Ingestão de Alimentos/reabilitação , Feminino , Humanos , Internet , Masculino , Pesquisa Qualitativa
17.
J Proteome Res ; 15(3): 900-13, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26781341

RESUMO

The plant plasma membrane is the interface between the cell and its environment undertaking a range of important functions related to transport, signaling, cell wall biosynthesis, and secretion. Multiple proteomic studies have attempted to capture the diversity of proteins in the plasma membrane using biochemical fractionation techniques. In this study, two-phase partitioning was combined with free-flow electrophoresis to produce a population of highly purified plasma membrane vesicles that were subsequently characterized by tandem mass spectroscopy. This combined high-quality plasma membrane isolation technique produced a reproducible proteomic library of over 1000 proteins with an extended dynamic range including plasma membrane-associated proteins. The approach enabled the detection of a number of putative plasma membrane proteins not previously identified by other studies, including peripheral membrane proteins. Utilizing multiple data sources, we developed a PM-confidence score to provide a value indicating association to the plasma membrane. This study highlights over 700 proteins that, while seemingly abundant at the plasma membrane, are mostly unstudied. To validate this data set, we selected 14 candidates and transiently localized 13 to the plasma membrane using a fluorescent tag. Given the importance of the plasma membrane, this data set provides a valuable tool to further investigate important proteins. The mass spectrometry data are available via ProteomeXchange, identifier PXD001795.


Assuntos
Proteínas de Arabidopsis/isolamento & purificação , Arabidopsis/metabolismo , Proteínas de Membrana/isolamento & purificação , Proteoma/isolamento & purificação , Plântula/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Eletroforese , Eletroforese em Gel Bidimensional , Proteínas de Membrana/metabolismo , Proteoma/metabolismo , Espectrometria de Massas em Tandem , Vesículas Transportadoras/metabolismo
18.
Front Plant Sci ; 6: 301, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25999968

RESUMO

The application of westerns or immunoblotting techniques for assessing the composition, dynamics, and purity of protein extracts from plant material has become common practice. While the approach is reproducible, can be readily applied and is generally considered robust, the field of plant science suffers from a lack of antibody variety against plant proteins. The development of approaches that employ mass spectrometry to enable both relative and absolute quantification of many hundreds of proteins in a single sample from a single analysis provides a mechanism to overcome the expensive impediment in having to develop antibodies in plant science. We consider it an opportune moment to consider and better develop the adoption of multiple reaction monitoring (MRM)-based analyses in plant biochemistry.

19.
Front Plant Sci ; 5: 21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24550929

RESUMO

The plant cytosol is the major intracellular fluid that acts as the medium for inter-organellar crosstalk and where a plethora of important biological reactions take place. These include its involvement in protein synthesis and degradation, stress response signaling, carbon metabolism, biosynthesis of secondary metabolites, and accumulation of enzymes for defense and detoxification. This central role is highlighted by estimates indicating that the majority of eukaryotic proteins are cytosolic. Arabidopsis thaliana has been the subject of numerous proteomic studies on its different subcellular compartments. However, a detailed study of enriched cytosolic fractions from Arabidopsis cell culture has been performed only recently, with over 1,000 proteins reproducibly identified by mass spectrometry. The number of proteins allocated to the cytosol nearly doubles to 1,802 if a series of targeted proteomic characterizations of complexes is included. Despite this, few groups are currently applying advanced proteomic approaches to this important metabolic space. This review will highlight the current state of the Arabidopsis cytosolic proteome since its initial characterization a few years ago.

20.
Methods Mol Biol ; 1072: 527-39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24136544

RESUMO

Free-flow electrophoresis (FFE) is a technique for separation of proteins, peptides, organelles, and cells. With zone electrophoresis (ZE-FFE), organelles are separated according to surface charge. The plant Golgi and endoplasmic reticulum (ER) are similar in density and are therefore separated with difficulty using standard techniques such as density centrifugation. Purification of the ER and Golgi apparatus permits a biochemical and proteomic characterization which can reveal the division of processes between these compartments. Here we describe complete separation between the ER and more negatively charged Golgi compartments using ZE-FFE. We also describe techniques for assigning proteins to partially separated ER and the less negatively charged Golgi compartments.


Assuntos
Arabidopsis/metabolismo , Eletroforese/métodos , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Células Cultivadas , Membranas Intracelulares/metabolismo , Espectrometria de Massas , Protoplastos/metabolismo , Suspensões , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA