Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 10: 1002-1015, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31165027

RESUMO

Background: When nanoparticles (NPs) are applied into a biological fluid, such as blood, proteins bind rapidly to their surface forming a so-called "protein corona". These proteins are strongly attached to the NP surface and confers them a new biological identity that is crucial for the biological response in terms of body biodistribution, cellular uptake, and toxicity. The corona is dynamic in nature and it is well known that the composition varies in dependence of the physicochemical properties of the NPs. In the present study we investigated the protein corona that forms around poly(lactide-co-glycolide) (PLGA) NPs at different serum concentrations using two substantially different serum types, namely fetal bovine serum (FBS) and human serum. The corona was characterized by means of sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE), Bradford protein assay, zeta potential measurements, and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Additionally, the time-dependent cell interaction of PLGA NPs in the absence or presence of a preformed protein corona was assessed by in vitro incubation experiments with the human liver cancer cell line HepG2. Results: Our data revealed that the physiological environment critically affects the protein adsorption on PLGA NPs with significant impact on the NP-cell interaction. Under comparable conditions the protein amount forming the protein corona depends on the serum type used and the serum concentration. On PLGA NPs incubated with either FBS or human serum a clear difference in qualitative corona protein composition was identified by SDS-PAGE and LC-MS/MS in combination with bioinformatic protein classification. In the case of human serum a considerable change in corona composition was observed leading to a concentration-dependent desorption of abundant proteins in conjunction with an adsorption of high-affinity proteins with lower abundance. Cell incubation experiments revealed that the respective corona composition showed significant influence on the resulting nanoparticle-cell interaction. Conclusion: Controlling protein corona formation is still a challenging task and our data highlight the need for a rational future experimental design in order to enable a prediction of the corona formation on nanoparticle surfaces and, therefore, the resulting biodistribution in the body.

2.
Eur J Pharm Biopharm ; 141: 70-80, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31082511

RESUMO

Upon intravenous administration of nanoparticles (NP) into the bloodstream, proteins bind rapidly on their surface resulting in a formation of a so-called 'Protein Corona'. These proteins are strongly attached to the NP surface and provide a new biological identity which is crucial for the reaction at the nano-biointerface. The structure and composition of the protein corona is greatly determined by the physico-chemical properties of the NP and the characteristics of the biological environment. The overall objective of this study was to characterize the role of NP size/surface curvature and PEGylation on the formation of the protein corona. Therefore, we prepared NP in a size of 100 and 200 nm using the biodegradable polymers poly(DL-lactide-co-glycolide) (PLGA) and poly(DL-lactide-co-glycolide)-co-polyethylene glycol diblock (PLGA-PEG) and subsequently incubated them with fetal bovine serum (FBS) to induce the formation of a protein corona. After removal of unbound protein, we employed different analytical approaches to study the corona in detail. Sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed to gain a first impression about amount and composition of the corona proteins. Identification was carried out after tryptic in-solution digestion and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). In addition, we successfully established the Bradford protein assay as a suitable colorimetric method to quantify total adsorbed protein amount after alkaline hydrolysis of PLGA based NP. Our results revealed that protein adsorption on PLGA- and PLGA-PEG-NP didn't depend on NP size within the range of 100 and 200 nm. PEGylation led to a significant reduced amount of bound proteins. The depletion of proteins which are involved in immune response was remarkable and indicated a prolonged circulation time in body.


Assuntos
Nanopartículas/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Coroa de Proteína/química , Adsorção/efeitos dos fármacos , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Tamanho da Partícula , Poliésteres/química , Polietilenoglicóis/química , Propriedades de Superfície/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA