Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(4): 046401, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37566843

RESUMO

The recent observation of correlated phases in transition metal dichalcogenide moiré systems at integer and fractional filling promises new insight into metal-insulator transitions and the unusual states of matter that can emerge near such transitions. Here, we combine real- and momentum-space mapping techniques to study moiré superlattice effects in 57.4° twisted WSe_{2} (tWSe_{2}). Our data reveal a split-off flat band that derives from the monolayer Γ states. Using advanced data analysis, we directly quantify the moiré potential from our data. We further demonstrate that the global valence band maximum in tWSe_{2} is close in energy to this flat band but derives from the monolayer K states which show weaker superlattice effects. These results constrain theoretical models and open the perspective that Γ-valley flat bands might be involved in the correlated physics of twisted WSe_{2}.

2.
J Phys Condens Matter ; 33(34)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34126604

RESUMO

Self-affine rough interfaces are ubiquitous in experimental systems, and display characteristic scaling properties as a signature of the nature of disorder in their supporting medium, i.e. of the statistical features of its heterogeneities. Different methods have been used to extract roughness information from such self-affine structures, and in particular their scaling exponents and associated prefactors. Notably, for an experimental characterization of roughness features, it is of paramount importance to properly assess sample-to-sample fluctuations of roughness parameters. Here, by performing scaling analysis based on displacement correlation functions in real and reciprocal space, we compute statistical properties of the roughness parameters. As an ideal, artifact-free reference case study and particularly targeting finite-size systems, we consider three cases of numerically simulated one-dimensional interfaces: (i) elastic lines under thermal fluctuations and free of disorder, (ii) directed polymers in equilibrium with a disordered energy landscape, and (iii) elastic lines in the critical depinning state when the external applied driving force equals the depinning force set by disorder. Our results show that sample-to-sample fluctuations are rather large when measuring the roughness exponent. These fluctuations are also relevant for roughness amplitudes. Therefore a minimum of independent interface realizations (at least a few tens in our numerical simulations) should be used to guarantee sufficient statistical averaging, an issue often overlooked in experimental reports.

3.
Rev Sci Instrum ; 87(6): 063709, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27370461

RESUMO

We demonstrate the construction of a novel low-noise continuous flow humidity controller and its integration with a commercial variable-temperature atomic force microscope fluid cell, allowing precise control of humidity and temperature at the sample during nanoscale measurements. Based on wet and dry gas mixing, the design allows a high mechanical stability to be achieved by means of an ultrasonic atomiser for the generation of water-saturated gas, improving upon previous bubbler-based architectures. Water content in the flow is measured both at the inflow and outflow of the fluid cell, enabling the monitoring of water condensation and icing, and allowing controlled variation of the sample temperature independently of the humidity. To benchmark the performance of the controller, the results of detailed noise studies and time-based imaging of the formation of ice layers on highly oriented pyrolytic graphite are shown.

4.
Nanotechnology ; 24(10): 105705, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23426040

RESUMO

Using single-walled carbon nanotubes homogeneously coated with ferromagnetic metal as ultra-high resolution magnetic force microscopy probes, we investigate the key image formation parameters and their dependence on coating thickness. The crucial step of introducing molecular beam epitaxy for deposition of the magnetic coating allows highly controlled fabrication of tips with small magnetic volume, while retaining high magnetic anisotropy and prolonged lifetime characteristics. Calculating the interaction between the tips and a magnetic sample, including hitherto neglected thermal noise effects, we show that optimal imaging is achieved for a finite, intermediate-thickness magnetic coating, in excellent agreement with experimental observations. With such optimal tips, we demonstrate outstanding resolution, revealing sub-10 nm domains in hard magnetic samples, and non-perturbative imaging of nanoscale spin structures in soft magnetic materials, all at ambient conditions with no special vacuum, temperature or humidity controls.

5.
Phys Rev Lett ; 111(24): 247604, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24483701

RESUMO

Using the model system of ferroelectric domain walls, we explore the effects of long-range dipolar interactions and periodic ordering on the behavior of pinned elastic interfaces. In piezoresponse force microscopy studies of the characteristic roughening of intrinsic 71° stripe domains in BiFeO3 thin films, we find unexpectedly high values of the roughness exponent ζ=0.74±0.10, significantly different from those obtained for artificially written domain walls in this and other ferroelectric materials. The large value of the exponent suggests that a random field-dominated pinning, combined with stronger disorder and strain effects due to the step-bunching morphology of the samples, could be the dominant source of pinning in the system.

6.
Phys Rev Lett ; 109(14): 147601, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-23083287

RESUMO

Using multiscaling analysis, we compare the characteristic roughening of ferroelectric domain walls in Pb(Zr0.2Ti0.8)O3 thin films with numerical simulations of weakly pinned one-dimensional interfaces. Although at length scales up to L(MA)≥5 µm the ferroelectric domain walls behave similarly to the numerical interfaces, showing a simple monoaffine scaling (with a well-defined roughness exponent ζ), we demonstrate more complex scaling at higher length scales, making the walls globally multiaffine (varying ζ at different observation length scales). The dominant contributions to this multiaffine scaling appear to be very localized variations in the disorder potential, possibly related to dislocation defects present in the substrate.

7.
J Phys Condens Matter ; 23(14): 142201, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21422508

RESUMO

Ferroelectric switching in BiFeO3 multiferroic thin films was studied by piezoresponse force microscopy, as a function of the tip voltage and sweep direction, for samples with two different intrinsic domain structures. In all films, the switched polarization direction follows the in-plane and out-of-plane components of the highly inhomogeneous electric field applied by the microscope tip. In films with 'bubble-like' intrinsic domains, we observed in-plane switching assisted by out-of-plane switching for lower voltage values, and independent in-plane and out-of-plane switching for higher voltages, in both cases allowing full control of the ferroelectric polarization depending on the tip voltage polarity and sweep direction. In films with 'stripe-like' intrinsic domains, independent in-plane and out-of-plane switching was observed, but unswitched stripe domains prevented full control of the ferroelectric polarization over large areas. We correlate the observed switching behavior with the field-driven onset of a highly distorted tetragonal phase predicted by ab initio calculations, which leads to a very high in-plane susceptibility during the return to the non-distorted monoclinic phase when the field is decreased. Depending on the specific strain and disorder present in the sample, the transition towards the highly distorted phase may be asymmetrized, and easier to reach when an electric field opposite to the out-of-plane polarization direction is applied.

8.
Phys Rev Lett ; 100(2): 027602, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18232925

RESUMO

Domains in ferroelectric films are usually smooth, stripelike, very thin compared with magnetic ones, and satisfy the Landau-Lifshitz-Kittel scaling law (width proportional to square root of film thickness). However, the ferroelectric domains in very thin films of multiferroic BiFeO3 have irregular domain walls characterized by a roughness exponent 0.5-0.6 and in-plane fractal Hausdorff dimension H||=1.4+/-0.1, and the domain size scales with an exponent 0.59+/-0.08 rather than 1/2. The domains are significantly larger than those of other ferroelectrics of the same thickness, and closer in size to those of magnetic materials, which is consistent with a strong magnetoelectric coupling at the walls. A general model is proposed for ferroelectrics, ferroelastics or ferromagnetic domains which relates the fractal dimension of the walls to domain size scaling.

9.
Phys Rev Lett ; 94(19): 197601, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-16090210

RESUMO

The static configuration of ferroelectric domain walls was investigated using atomic force microscopy on epitaxial PbZr(0.2)Ti(0.8)O(3) thin films. Measurements of domain wall roughness reveal a power-law growth of the correlation function of relative displacements B(L) alpha L(2zeta) with zeta approximately 0.26 at short length scales L, followed by an apparent saturation at large L. In the same films, the dynamic exponent mu was found to be approximately 0.6 from independent measurements of domain wall creep. These results give an effective domain wall dimensionality of d = 2.5, in good agreement with theoretical calculations for a two-dimensional elastic interface in the presence of random-bond disorder and long-range dipolar interactions.

10.
Phys Rev Lett ; 89(9): 097601, 2002 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-12190438

RESUMO

Ferroelectric switching and nanoscale domain dynamics were investigated using atomic force microscopy on monocrystalline Pb(Zr(0.2)Ti(0.8))O(3) thin films. Measurements of domain size versus writing time reveal a two-step domain growth mechanism, in which initial nucleation is followed by radial domain wall motion perpendicular to the polarization direction. The electric field dependence of the domain wall velocity demonstrates that domain wall motion in ferroelectric thin films is a creep process, with the critical exponent mu close to 1. The dimensionality of the films suggests that disorder is at the origin of the observed creep behavior.

11.
Science ; 284(5417): 1152-5, 1999 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-10325222

RESUMO

The polarization field of the ferroelectric oxide lead zirconate titanate [Pb(ZrxTi1-x)O3] was used to tune the critical temperature of the hightemperature superconducting cuprate gadolinium barium copper oxide (GdBa2Cu3O7-x) in a reversible, nonvolatile fashion. For slightly underdoped samples, a uniform shift of several Kelvin in the critical temperature was observed, whereas for more underdoped samples, an insulating state was induced. This transition from superconducting to insulating behavior does not involve chemical or crystalline modification of the material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA