Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Neurol ; 266(8): 1919-1926, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31069529

RESUMO

BACKGROUND: Neurological disorders are clinically heterogeneous group of disorders and are major causes of disability and death. Several of these disorders are caused due to genetic aberration. A precise and confirmatory diagnosis in the patients in a timely manner is essential for appropriate therapeutic and management strategies. Due to the complexity of the clinical presentations across various neurological disorders, arriving at an accurate diagnosis remains a challenge. METHODS: We sequenced 1012 unrelated patients from India with suspected neurological disorders, using TruSight One panel. Genetic variations were identified using the Strand NGS software and interpreted using the StrandOmics platform. RESULTS: We were able to detect mutations in 197 genes in 405 (40%) cases and 178 mutations were novel. The highest diagnostic rate was observed among patients with muscular dystrophy (64%) followed by leukodystrophy and ataxia (43%, each). In our cohort, 26% of the patients who received definitive diagnosis were primarily referred with complex neurological phenotypes with no suggestive diagnosis. In terms of mutations types, 62.8% were truncating and in addition, 13.4% were structural variants, which are also likely to cause loss of function. CONCLUSION: In our study, we observed an improved performance of multi-gene panel testing, with an overall diagnostic yield of 40%. Furthermore, we show that NGS (next-generation sequencing)-based testing is comprehensive and can detect all types of variants including structural variants. It can be considered as a single-platform genetic test for neurological disorders that can provide a swift and definitive diagnosis in a cost-effective manner.


Assuntos
Análise de Dados , Predisposição Genética para Doença/genética , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças do Sistema Nervoso/genética , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Predisposição Genética para Doença/epidemiologia , Humanos , Índia/epidemiologia , Masculino , Herança Multifatorial/genética , Mutação/genética , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/epidemiologia
2.
Cancer Med ; 6(5): 883-901, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28371134

RESUMO

Comprehensive genetic profiling of tumors using next-generation sequencing (NGS) is gaining acceptance for guiding treatment decisions in cancer care. We designed a cancer profiling test combining both deep sequencing and immunohistochemistry (IHC) of relevant cancer targets to aid therapy choices in both standard-of-care (SOC) and advanced-stage treatments for solid tumors. The SOC report is provided in a short turnaround time for four tumors, namely lung, breast, colon, and melanoma, followed by an investigational report. For other tumor types, an investigational report is provided. The NGS assay reports single-nucleotide variants (SNVs), copy number variations (CNVs), and translocations in 152 cancer-related genes. The tissue-specific IHC tests include routine and less common markers associated with drugs used in SOC settings. We describe the standardization, validation, and clinical utility of the StrandAdvantage test (SA test) using more than 250 solid tumor formalin-fixed paraffin-embedded (FFPE) samples and control cell line samples. The NGS test showed high reproducibility and accuracy of >99%. The test provided relevant clinical information for SOC treatment as well as more information related to investigational options and clinical trials for >95% of advanced-stage patients. In conclusion, the SA test comprising a robust and accurate NGS assay combined with clinically relevant IHC tests can detect somatic changes of clinical significance for strategic cancer management in all the stages.


Assuntos
DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imuno-Histoquímica/métodos , Neoplasias/terapia , Análise de Sequência de DNA/métodos , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Padrão de Cuidado , Translocação Genética
3.
PLoS Comput Biol ; 8(10): e1002737, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133345

RESUMO

We describe methods for rapid sequencing of the entire human mitochondrial genome (mtgenome), which involve long-range PCR for specific amplification of the mtgenome, pyrosequencing, quantitative mapping of sequence reads to identify sequence variants and heteroplasmy, as well as de novo sequence assembly. These methods have been used to study 40 publicly available HapMap samples of European (CEU) and African (YRI) ancestry to demonstrate a sequencing error rate <5.63×10(-4), nucleotide diversity of 1.6×10(-3) for CEU and 3.7×10(-3) for YRI, patterns of sequence variation consistent with earlier studies, but a higher rate of heteroplasmy varying between 10% and 50%. These results demonstrate that next-generation sequencing technologies allow interrogation of the mitochondrial genome in greater depth than previously possible which may be of value in biology and medicine.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Genômica/métodos , Análise de Sequência de DNA/métodos , População Negra/genética , Bases de Dados Genéticas , Variação Genética , Projeto HapMap , Humanos , Reação em Cadeia da Polimerase , Alinhamento de Sequência , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA