Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 960: 176177, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37931839

RESUMO

Cryptococcus neoformans, an opportunistic fungal pathogen, primarily infects immunodeficient patients frequently causing cryptococcal meningoencephalitis (CM). Increased intracranial pressure (ICP) is a serious complication responsible for increased morbidity and mortality in CM patients. Non-invasive pharmacological agents that mitigate ICP could be beneficial in treating CM patients. The objective of the study was to investigate the efficacy of acetazolamide (AZA), candesartan (CAN), and triciribine (TCBN), in combination with the antifungal fluconazole, on C. neoformans-induced endothelial, brain, and lung injury in an experimental mouse model of CM. Our study shows that C. neoformans increases the expression of brain endothelial cell (BEC) junction proteins Claudin-5 (Cldn5) and VE-Cadherin to induce pathological cell-barrier remodeling and gap formation associated with increased Akt and p38 MAPK activation. All three agents inhibited C. neoformans-induced endothelial gap formation, only CAN and TCBN significantly reduced C. neoformans-induced Cldn5 expression, and only TCBN was effective in inhibiting Akt and p38MAPK. Interestingly, although C. neoformans did not cause brain or lung edema in mice, it induced lung and brain injuries, which were significantly reversed by AZA, CAN, or TCBN. Our study provides novel insights into the direct effects of C. neoformans on BECs in vitro, and the potential benefits of using AZA, CAN, or TCBN in the management of CM patients.


Assuntos
Cryptococcus neoformans , Meningite Criptocócica , Meningoencefalite , Humanos , Animais , Camundongos , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Meningite Criptocócica/tratamento farmacológico , Meningite Criptocócica/microbiologia , Acetazolamida/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Meningoencefalite/tratamento farmacológico , Meningoencefalite/microbiologia , Meningoencefalite/patologia
2.
Cells ; 11(11)2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35681477

RESUMO

The multi-gene claudin (CLDN) family of tight junction proteins have isoform-specific roles in blood-tissue barrier regulation. CLDN17, a putative anion pore-forming CLDN based on its structural characterization, is assumed to regulate anion balance across the blood-tissue barriers. However, our knowledge about CLDN17 in physiology and pathology is limited. The current study investigated how Cldn17 deficiency in mice affects blood electrolytes and kidney structure. Cldn17-/- mice revealed no breeding abnormalities, but the newborn pups exhibited delayed growth. Adult Cldn17-/- mice displayed electrolyte imbalance, oxidative stress, and injury to the kidneys. Ingenuity pathway analysis followed by RNA-sequencing revealed hyperactivation of signaling pathways and downregulation of SOD1 expression in kidneys associated with inflammation and reactive oxygen species generation, demonstrating the importance of Cldn17 in the maintenance of electrolytes and reactive oxygen species across the blood-tissue barrier.


Assuntos
Claudinas , Rim , Estresse Oxidativo , Equilíbrio Hidroeletrolítico , Animais , Ânions/metabolismo , Claudinas/genética , Claudinas/metabolismo , Rim/fisiopatologia , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo
3.
Cancers (Basel) ; 14(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35406397

RESUMO

Akt1 suppression in advanced cancers has been indicated to promote metastasis. Our understanding of how Akt1 orchestrates this is incomplete. Using the NanoString®-based miRNA and mRNA profiling of PC3 and DU145 cells, and subsequent data analysis using the DIANA-mirPath, dbEMT, nCounter, and Ingenuity® databases, we identified the miRNAs and associated genes responsible for Akt1-mediated prostate cancer (PCa) epithelial-to-mesenchymal transition (EMT). Akt1 loss in PC3 and DU145 cells primarily induced changes in the miRNAs and mRNAs regulating EMT genes. These include increased miR-199a-5p and decreased let-7a-5p expression associated with increased TGFß-R1 expression. Treatment with locked nucleic acid (LNA) miR-199a-5p inhibitor and/or let-7a-5p mimic induced expression changes in EMT genes correlating to their anticipated effects on PC3 and DU145 cell motility, invasion, and TGFß-R1 expression. A correlation between increased miR-199a-5p and TGFß-R1 expression with reduced let-7a-5p was also observed in high Gleason score PCa patients in the cBioportal database analysis. Collectively, our studies show the effect of Akt1 suppression in advanced PCa on EMT modulating miRNA and mRNA expression changes and highlight the potential benefits of miR-199a-5p and let-7a-5p in therapy and/or early screening of mPCa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA