Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361081

RESUMO

Cancer cachexia is a common deleterious paraneoplastic syndrome that represents an area of unmet clinical need, partly due to its poorly understood aetiology and complex multifactorial nature. We have interrogated multiple genetically defined larval Drosophila models of tumourigenesis against key features of human cancer cachexia. Our results indicate that cachectic tissue wasting is dependent on the genetic characteristics of the tumour and demonstrate that host malnutrition or tumour burden are not sufficient to drive wasting. We show that JAK/STAT and TNF-α/Egr signalling are elevated in cachectic muscle and promote tissue wasting. Furthermore, we introduce a dual driver system that allows independent genetic manipulation of tumour and host skeletal muscle. Overall, we present a novel Drosophila larval paradigm to study tumour/host tissue crosstalk in vivo, which may contribute to future research in cancer cachexia and impact the design of therapeutic approaches for this pathology.


Assuntos
Caquexia/patologia , Carcinogênese/patologia , Modelos Animais de Doenças , Larva/crescimento & desenvolvimento , Neoplasias/complicações , Animais , Caquexia/etiologia , Caquexia/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Drosophila , Perfilação da Expressão Gênica , Humanos , Janus Quinases/genética , Janus Quinases/metabolismo , Larva/genética , Larva/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
2.
Sci Rep ; 10(1): 10106, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572049

RESUMO

All multicellular organisms are exposed to a diversity of infectious agents and to the emergence and proliferation of malignant cells. The protection conferred by some infections against cancer has been recently linked to the production of acquired immunity effectors such as antibodies. However, the evolution of innate immunity as a mechanism to prevent cancer and how it is jeopardized by infections remain poorly investigated. Here, we explored this question by performing experimental infections in two genetically modified invertebrate models (Drosophila melanogaster) that develop invasive or non-invasive neoplastic brain tumors. After quantifying tumor size and antimicrobial peptide gene expression, we found that Drosophila larvae infected with a naturally occurring bacterium had smaller tumors compared to controls and to fungus-infected larvae. This was associated with the upregulation of genes encoding two antimicrobial peptides-diptericin and drosomycin-that are known to be important mediators of tumor cell death. We further confirmed that tumor regression upon infection was associated with an increase in tumor cell death. Thus, our study suggests that infection could have a protective role through the production of antimicrobial peptides that increase tumor cell death. Finally, our study highlights the need to understand the role of innate immune effectors in the complex interactions between infections and cancer cell communities in order to develop innovative cancer treatment strategies.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Imunidade Inata/fisiologia , Neoplasias/imunologia , Animais , Antibacterianos/metabolismo , Bactérias/genética , Infecções Bacterianas/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/farmacologia , Drosophila melanogaster , Fungos/genética , Expressão Gênica/genética , Invertebrados/genética , Larva/metabolismo , Larva/microbiologia , Neoplasias/prevenção & controle
3.
Insect Biochem Mol Biol ; 120: 103339, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32105779

RESUMO

Hemocytes, the immune cells in mosquitoes, participate in immune defenses against pathogens including malaria parasites. Mosquito hemocytes can also be infected by arthropod-borne viruses but the pro- or anti-viral nature of this interaction is unknown. Although there has been progress on hemocyte characterization during pathogen infection in mosquitoes, the specific contribution of hemocytes to immune responses and the hemocyte-specific functions of immune genes and pathways remain unresolved due to the lack of genetic tools to manipulate gene expression in these cells specifically. Here, we used the Gal4-UAS system to characterize the activity of the Drosophila hemocyte-specific hemolectin promoter in the adults of Anopheles gambiae, the malaria mosquito. We established an hml-Gal4 driver line that we further crossed to a fluorescent UAS responder line, and examined the expression pattern in the adult progeny driven by the hml promoter. We show that the hml regulatory region drives hemocyte-specific transgene expression in a subset of hemocytes, and that transgene expression is triggered after a blood meal. The hml promoter drives transgene expression in differentiating prohemocytes as well as in differentiated granulocytes. Analysis of different immune markers in hemocytes in which the hml promoter drives transgene expression revealed that this regulatory region could be used to study phagocytosis as well as melanization. Finally, the hml promoter drives transgene expression in hemocytes in which o'nyong-nyong virus replicates. Altogether, the Drosophila hml promoter constitutes a good tool to drive transgene expression in hemocyte only and to analyze the function of these cells and the genes they express during pathogen infection in Anopheles gambiae.


Assuntos
Anopheles/genética , Proteínas de Drosophila/farmacologia , Drosophila melanogaster/química , Expressão Gênica , Hemócitos/metabolismo , Lectinas/farmacologia , Animais , Anopheles/metabolismo , Linhagem Celular , Feminino
4.
Mol Cell ; 76(1): 163-176.e8, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31492633

RESUMO

Sensing nutrient availability is essential for appropriate cellular growth, and mTORC1 is a major regulator of this process. Mechanisms causing mTORC1 activation are, however, complex and diverse. We report here an additional important step in the activation of mTORC1, which regulates the efflux of amino acids from lysosomes into the cytoplasm. This process requires DRAM-1, which binds the membrane carrier protein SCAMP3 and the amino acid transporters SLC1A5 and LAT1, directing them to lysosomes and permitting efficient mTORC1 activation. Consequently, we show that loss of DRAM-1 also impacts pathways regulated by mTORC1, including insulin signaling, glycemic balance, and adipocyte differentiation. Interestingly, although DRAM-1 can promote autophagy, this effect on mTORC1 is autophagy independent, and autophagy only becomes important for mTORC1 activation when DRAM-1 is deleted. These findings provide important insights into mTORC1 activation and highlight the importance of DRAM-1 in growth control, metabolic homeostasis, and differentiation.


Assuntos
Aminoácidos/metabolismo , Proteína 7 Relacionada à Autofagia/metabolismo , Metabolismo Energético , Lisossomos/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Membrana/metabolismo , Células 3T3-L1 , Adipócitos/enzimologia , Adipogenia , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema y+L de Transporte de Aminoácidos/genética , Sistema y+L de Transporte de Aminoácidos/metabolismo , Animais , Proteína 7 Relacionada à Autofagia/genética , Glicemia/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ativação Enzimática , Células HEK293 , Células HeLa , Humanos , Insulina/sangue , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Transporte Proteico
5.
Elife ; 82019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31358113

RESUMO

Antimicrobial peptides (AMPs) are small cationic molecules best known as mediators of the innate defence against microbial infection. While in vitro and ex vivo evidence suggest AMPs' capacity to kill cancer cells, in vivo demonstration of an anti-tumour role of endogenous AMPs is lacking. Using a Drosophila model of tumourigenesis, we demonstrate a role for the AMP Defensin in the control of tumour progression. Our results reveal that Tumour Necrosis Factor mediates exposure of phosphatidylserine (PS), which makes tumour cells selectively sensitive to the action of Defensin remotely secreted from tracheal and fat tissues. Defensin binds tumour cells in PS-enriched areas, provoking cell death and tumour regression. Altogether, our results provide the first in vivo demonstration for a role of an endogenous AMP as an anti-cancer agent, as well as a mechanism that explains tumour cell sensitivity to the action of AMPs.


Assuntos
Morte Celular , Defensinas/metabolismo , Fatores Imunológicos/metabolismo , Neoplasias/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Modelos Animais de Doenças , Drosophila , Análise de Sobrevida
6.
Biomed Res Int ; 2018: 7152962, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29725601

RESUMO

The study of cancer has represented a central focus in medical research for over a century. The great complexity and constant evolution of the pathology require the use of multiple research model systems and interdisciplinary approaches. This is necessary in order to achieve a comprehensive understanding into the mechanisms driving disease initiation and progression, to aid the development of appropriate therapies. In recent decades, the fruit fly Drosophila melanogaster and its associated powerful genetic tools have become a very attractive model system to study tumour-intrinsic and non-tumour-derived processes that mediate tumour development in vivo. In this review, we will summarize recent work on Drosophila as a model system to study cancer biology. We will focus on the interactions between tumours and their microenvironment, including extrinsic mechanisms affecting tumour growth and how tumours impact systemic host physiology.


Assuntos
Morte Celular/genética , Proliferação de Células/genética , Drosophila melanogaster/genética , Neoplasias/genética , Neoplasias/patologia , Animais , Progressão da Doença , Humanos , Modelos Biológicos , Microambiente Tumoral/genética
7.
Parasit Vectors ; 9: 11, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26739500

RESUMO

BACKGROUND: Survival to dry season conditions of sub-Saharan savannahs is a major challenge for insects inhabiting such environments, especially regarding the desiccation threat they are exposed to. While extensive literature about insect seasonality has revealed morphologic, metabolic and physiological changes in many species, only a few studies have explored the responses following exposure to the stressful dry season conditions in major malaria vectors. Here, we explored morphological changes triggered by exposure to dry season conditions in An. gambiae s.l. mosquitoes by comparing females reared in climatic chambers reflecting environmental conditions found in mosquito habitats during the rainy and dry seasons in a savannah area of Burkina Faso (West Africa). RESULTS: Using scanning electron microscopy (SEM) and confocal imaging, we revealed significant changes in morphological features of the spiracles in females An. gambiae s.l. exposed to contrasted environmental conditions. Hence, the hairs surrounding the spiracles were thicker in the three species when raised under dry season environmental conditions. The thicker hairs were in some cases totally obstructing spiracular openings. Specific staining provided evidence against contamination by external microorganisms such as bacteria and fungi. However, only further analysis would unequivocally rule out the hypothesis of experimental artifact. CONCLUSION: Morphological changes in spiracular features probably help to limit body water loss during desiccating conditions, therefore contributing to insect survival. Differences between species within the An. gambiae complex might therefore reflect different survival strategies used by these species to overcome the detrimental dry season conditions in the wild.


Assuntos
Anopheles/ultraestrutura , Insetos Vetores/ultraestrutura , Malária/transmissão , Animais , Anopheles/fisiologia , Burkina Faso/epidemiologia , Desidratação , Ecossistema , Meio Ambiente , Feminino , Humanos , Insetos Vetores/fisiologia , Masculino , Fenótipo , Estações do Ano
8.
J Lipid Res ; 56(11): 2094-101, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26353752

RESUMO

In terrestrial insects, cuticular hydrocarbons (CHCs) provide protection from desiccation. Specific CHCs can also act as pheromones, which are important for successful mating. Oenocytes are abdominal cells thought to act as specialized units for CHC biogenesis that consists of long-chain fatty acid (LCFA) synthesis, optional desaturation(s), elongation to very long-chain fatty acids (VLCFAs), and removal of the carboxyl group. By investigating CHC biogenesis in Drosophila melanogaster, we showed that VLCFA synthesis takes place only within the oenocytes. Conversely, several pathways, which may compensate for one another, can feed the oenocyte pool of LCFAs, suggesting that this step is a critical node for regulating CHC synthesis. Importantly, flies deficient in LCFA synthesis sacrificed their triacylglycerol stores while maintaining some CHC production. Moreover, pheromone production was lower in adult flies that emerged from larvae that were fed excess dietary lipids, and their mating success was lower. Further, we showed that pheromone production in the oenocytes depends on lipid metabolism in the fat tissue and that fatty acid transport protein, a bipartite acyl-CoA synthase (ACS)/FA transporter, likely acts through its ACS domain in the oenocyte pathway of CHC biogenesis. Our study highlights the importance of environmental and physiological inputs in regulating LCFA synthesis to eventually control sexual communication in a polyphagous animal.


Assuntos
Drosophila melanogaster/metabolismo , Metabolismo dos Lipídeos , Feromônios/biossíntese , Animais , Vias Biossintéticas , Proteínas de Drosophila/metabolismo , Corpo Adiposo/metabolismo , Ácido Graxo Sintase Tipo I/metabolismo , Ácidos Graxos/metabolismo , Feminino , Homeostase , Larva/metabolismo , Gotículas Lipídicas/metabolismo , Masculino , Receptores de Lipoproteínas/metabolismo , Triglicerídeos/metabolismo
9.
PLoS Genet ; 11(2): e1004995, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25692475

RESUMO

Fatty acid (FA) metabolism is deregulated in several human diseases including metabolic syndrome, type 2 diabetes and cancers. Therefore, FA-metabolic enzymes are potential targets for drug therapy, although the consequence of these treatments must be precisely evaluated at the organismal and cellular levels. In healthy organism, synthesis of triacylglycerols (TAGs)-composed of three FA units esterified to a glycerol backbone-is increased in response to dietary sugar. Saturation in the storage and synthesis capacity of TAGs is associated with type 2 diabetes progression. Sugar toxicity likely depends on advanced-glycation-end-products (AGEs) that form through covalent bounding between amine groups and carbonyl groups of sugar or their derivatives α-oxoaldehydes. Methylglyoxal (MG) is a highly reactive α-oxoaldehyde that is derived from glycolysis through a non-enzymatic reaction. Glyoxalase 1 (Glo1) works to neutralize MG, reducing its deleterious effects. Here, we have used the power of Drosophila genetics to generate Fatty acid synthase (FASN) mutants, allowing us to investigate the consequence of this deficiency upon sugar-supplemented diets. We found that FASN mutants are lethal but can be rescued by an appropriate lipid diet. Rescued animals do not exhibit insulin resistance, are dramatically sensitive to dietary sugar and accumulate AGEs. We show that FASN and Glo1 cooperate at systemic and cell-autonomous levels to protect against sugar toxicity. We observed that the size of FASN mutant cells decreases as dietary sucrose increases. Genetic interactions at the cell-autonomous level, where glycolytic enzymes or Glo1 were manipulated in FASN mutant cells, revealed that this sugar-dependent size reduction is a direct consequence of MG-derived-AGE accumulation. In summary, our findings indicate that FASN is dispensable for cell growth if extracellular lipids are available. In contrast, FA-synthesis appears to be required to limit a cell-autonomous accumulation of MG-derived-AGEs, supporting the notion that MG is the most deleterious α-oxoaldehyde at the intracellular level.


Assuntos
Diabetes Mellitus Tipo 2/genética , Ácido Graxo Sintase Tipo I/genética , Lactoilglutationa Liase/genética , Síndrome Metabólica/genética , Neoplasias/genética , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Sacarose Alimentar/administração & dosagem , Sacarose Alimentar/toxicidade , Drosophila , Ácido Graxo Sintase Tipo I/metabolismo , Produtos Finais de Glicação Avançada/genética , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Resistência à Insulina/genética , Lactoilglutationa Liase/metabolismo , Lipídeos/administração & dosagem , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Mutação , Neoplasias/metabolismo , Neoplasias/patologia , Aldeído Pirúvico/metabolismo , Triglicerídeos/biossíntese
10.
Development ; 141(20): 3955-65, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25252945

RESUMO

In most animals, steroid hormones are crucial regulators of physiology and developmental life transitions. Steroid synthesis depends on extrinsic parameters and autoregulatory processes to fine-tune the dynamics of hormone production. In Drosophila, transient increases of the steroid prohormone ecdysone, produced at each larval stage, are necessary to trigger moulting and metamorphosis. Binding of the active ecdysone (20-hydroxyecdysone) to its receptor (EcR) is followed by the sequential expression of the nuclear receptors E75, DHR3 and ßFtz-f1, representing a model for steroid hormone signalling. Here, we have combined genetic and imaging approaches to investigate the precise role of this signalling cascade within theprothoracic gland (PG), where ecdysone synthesis takes place. We show that these receptors operate through an apparent unconventional hierarchy in the PG to control ecdysone biosynthesis. At metamorphosis onset, DHR3 emerges as the downstream component that represses steroidogenic enzymes and requires an early effect of EcR for this repression. To avoid premature repression of steroidogenesis, E75 counteracts DHR3 activity, whereas EcR and ßFtz-f1 act early in development through a forward process to moderate DHR3 levels. Our findings suggest that within the steroidogenic tissue, a given 20-hydroxyecdysone peak induces autoregulatory processes to sharpen ecdysone production and to confer competence for ecdysteroid biosynthesis at the next developmental phase, providing novel insights into steroid hormone kinetics.


Assuntos
Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Esteroides/biossíntese , Animais , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Ecdisona/metabolismo , Retroalimentação Fisiológica , Metamorfose Biológica , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
11.
PLoS Genet ; 8(8): e1002925, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22956916

RESUMO

Fatty acid (FA) metabolism plays a central role in body homeostasis and related diseases. Thus, FA metabolic enzymes are attractive targets for drug therapy. Mouse studies on Acetyl-coenzymeA-carboxylase (ACC), the rate-limiting enzyme for FA synthesis, have highlighted its homeostatic role in liver and adipose tissue. We took advantage of the powerful genetics of Drosophila melanogaster to investigate the role of the unique Drosophila ACC homologue in the fat body and the oenocytes. The fat body accomplishes hepatic and storage functions, whereas the oenocytes are proposed to produce the cuticular lipids and to contribute to the hepatic function. RNA-interfering disruption of ACC in the fat body does not affect viability but does result in a dramatic reduction in triglyceride storage and a concurrent increase in glycogen accumulation. These metabolic perturbations further highlight the role of triglyceride and glycogen storage in controlling circulatory sugar levels, thereby validating Drosophila as a relevant model to explore the tissue-specific function of FA metabolic enzymes. In contrast, ACC disruption in the oenocytes through RNA-interference or tissue-targeted mutation induces lethality, as does oenocyte ablation. Surprisingly, this lethality is associated with a failure in the watertightness of the spiracles-the organs controlling the entry of air into the trachea. At the cellular level, we have observed that, in defective spiracles, lipids fail to transfer from the spiracular gland to the point of air entry. This phenotype is caused by disrupted synthesis of a putative very-long-chain-FA (VLCFA) within the oenocytes, which ultimately results in a lethal anoxic issue. Preventing liquid entry into respiratory systems is a universal issue for air-breathing animals. Here, we have shown that, in Drosophila, this process is controlled by a putative VLCFA produced within the oenocytes.


Assuntos
Acetil-CoA Carboxilase , Drosophila melanogaster , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/genética , Sistema Respiratório/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Metabolismo dos Carboidratos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Corpo Adiposo/citologia , Corpo Adiposo/metabolismo , Ácidos Graxos/genética , Glicogênio/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Interferência de RNA , Triglicerídeos/genética , Triglicerídeos/metabolismo , Água/metabolismo
12.
Dev Biol ; 349(1): 35-45, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20932968

RESUMO

Ecdysteroids are steroid hormones, which coordinate major developmental transitions in insects. Both the rises and falls in circulating levels of active hormones are important for coordinating molting and metamorphosis, making both ecdysteroid biosynthesis and inactivation of physiological relevance. We demonstrate that Drosophila melanogaster Cyp18a1 encodes a cytochrome P450 enzyme (CYP) with 26-hydroxylase activity, a prominent step in ecdysteroid catabolism. A clear ortholog of Cyp18a1 exists in most insects and crustaceans. When Cyp18a1 is transfected in Drosophila S2 cells, extensive conversion of 20-hydroxyecdysone (20E) into 20-hydroxyecdysonoic acid is observed. This is a multi-step process, which involves the formation of 20,26-dihydroxyecdysone as an intermediate. In Drosophila larvae, Cyp18a1 is expressed in many target tissues of 20E. We examined the consequences of Cyp18a1 inactivation on Drosophila development. Null alleles generated by excision of a P element and RNAi knockdown of Cyp18a1 both result in pupal lethality, possibly as a consequence of impaired ecdysteroid degradation. Our data suggest that the inactivation of 20E is essential for proper development and that CYP18A1 is a key enzyme in this process.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/crescimento & desenvolvimento , Metamorfose Biológica , Animais , Linhagem Celular , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Ecdisterona/química , Ecdisterona/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Oxirredução , Filogenia , Interferência de RNA
13.
PLoS Genet ; 6(5): e1000937, 2010 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-20463884

RESUMO

S6 kinases (S6Ks) act to integrate nutrient and insulin signaling pathways and, as such, function as positive effectors in cell growth and organismal development. However, they also have been shown to play a key role in limiting insulin signaling and in mediating the autophagic response. To identify novel regulators of S6K signaling, we have used a Drosophila-based, sensitized, gain-of-function genetic screen. Unexpectedly, one of the strongest enhancers to emerge from this screen was the nuclear receptor (NR), Drosophila hormone receptor 3 (DHR3), a critical constituent in the coordination of Drosophila metamorphosis. Here we demonstrate that DHR3, through dS6K, also acts to regulate cell-autonomous growth. Moreover, we show that the ligand-binding domain (LBD) of DHR3 is essential for mediating this response. Consistent with these findings, we have identified an endogenous DHR3 isoform that lacks the DBD. These results provide the first molecular link between the dS6K pathway, critical in controlling nutrient-dependent growth, and that of DHR3, a major mediator of ecdysone signaling, which, acting together, coordinate metamorphosis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Animais , Drosophila/química , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Metamorfose Biológica , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Quinases S6 Ribossômicas/genética , Transdução de Sinais
14.
Dev Cell ; 13(6): 857-71, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18061567

RESUMO

In insects, control of body size is intimately linked to nutritional quality as well as environmental and genetic cues that regulate the timing of developmental transitions. Prothoracicotropic hormone (PTTH) has been proposed to play an essential role in regulating the production and/or release of ecdysone, a steroid hormone that stimulates molting and metamorphosis. In this report, we examine the consequences on Drosophila development of ablating the PTTH-producing neurons. Surprisingly, PTTH production is not essential for molting or metamorphosis. Instead, loss of PTTH results in delayed larval development and eclosion of larger flies with more cells. Prolonged feeding, without changing the rate of growth, causes the overgrowth and is a consequence of low ecdysteroid titers. These results indicate that final body size in insects is determined by a balance between growth-rate regulators such as insulin and developmental timing cues such as PTTH that set the duration of the feeding interval.


Assuntos
Tamanho Corporal/fisiologia , Drosophila/crescimento & desenvolvimento , Hormônios de Inseto/farmacologia , Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Northern Blotting , Drosophila/embriologia , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Larva/crescimento & desenvolvimento , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais/fisiologia
15.
Insect Biochem Mol Biol ; 34(9): 991-1010, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15350618

RESUMO

We have reported recently the identification and characterization of the last three mitochondrial cytochrome P450 enzymes (CYP) controlling the biosynthesis of 20-hydroxyecdysone, the molting hormone of insects. These are encoded by the following genes: disembodied (dib, Cyp302a1, the 22-hydroxylase); shadow (sad, Cyp315a1, the 2-hydroxylase); and shade (shd, Cyp314a1, the 20-hydroxylase). Employing similar gene identification and transfection techniques and subsequent biochemical analysis of the expressed enzymatic activity, we report the identity of the Drosophila gene phantom (phm), located at 17D1 of the X chromosome, as encoding the microsomal 25-hydroxylase (Cyp306a1). Similar analysis following differential display-based gene identification has also resulted in the characterization of the corresponding 25-hydroxylase gene in Bombyx mori. Confirmation of 2,22,25-trideoxyecdysone (3beta,5beta-ketodiol) conversion to 2,22-dideoxyecdysone (3beta,5beta-ketotriol) mediated by either Phm enzyme employed LC, MS and definitive NMR analysis. In situ developmental gene analysis, in addition to northern, western and RT-PCR techniques during Drosophila embryonic, larval and adult development, are consistent with this identification. That is, strong expression of phm is restricted to the prothoracic gland cells of the Drosophila larval ring gland, where it undergoes dramatic changes in expression, and in the adult ovary, but also in the embryonic epidermis. During the last larval-larval transition in Bombyx, a similar expression pattern in the prothoracic gland is observed, but as in Drosophila, slight expression is also present in other tissues, suggesting a possible additional role for the phantom enzyme.


Assuntos
Bombyx/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Oxigenases de Função Mista/genética , Sequência de Aminoácidos , Animais , Bombyx/enzimologia , Bombyx/crescimento & desenvolvimento , DNA Complementar/análise , Drosophila melanogaster/enzimologia , Drosophila melanogaster/crescimento & desenvolvimento , Glândulas Exócrinas/química , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Dados de Sequência Molecular , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Transfecção
16.
Proc Natl Acad Sci U S A ; 100(24): 13773-8, 2003 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-14610274

RESUMO

The steroid 20-hydroxyecdysone (20E) is the primary regulatory hormone that mediates developmental transitions in insects and other arthropods. 20E is produced from ecdysone (E) by the action of a P450 monooxygenase that hydroxylates E at carbon 20. The gene coding for this key enzyme of ecdysteroidogenesis has not been identified definitively in any insect. We show here that the Drosophila E-20-monooxygenase (E20MO) is the product of the shade (shd) locus (cytochrome p450, CYP314a1). When shd is transfected into Drosophila S2 cells, extensive conversion of E to 20E is observed, whereas in sorted homozygous shd embryos, no E20MO activity is apparent either in vivo or in vitro. Mutations in shd lead to severe disruptions in late embryonic morphogenesis and exhibit phenotypes identical to those seen in disembodied (dib) and shadow (sad) mutants, two other genes of the Halloween class that code for P450 enzymes that catalyze the final two steps in the synthesis of E from 2,22-dideoxyecdysone. Unlike dib and sad, shd is not expressed in the ring gland but is expressed in peripheral tissues such as the epidermis, midgut, Malpighian tubules, and fat body, i.e., tissues known to be major sites of E20MO activity in a variety of insects. However, the tissue in which shd is expressed does not appear to be important for developmental function because misexpression of shd in the embryonic mesoderm instead of the epidermis, the normal embryonic tissue in which shd is expressed, rescues embryonic lethality.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Drosophila/metabolismo , Ecdisona/metabolismo , Esteroide Hidroxilases/metabolismo , Animais , Animais Geneticamente Modificados , Hidrocarboneto de Aril Hidroxilases/genética , Sequência de Bases , Linhagem Celular , Clonagem Molecular , DNA Complementar/genética , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Ecdisterona/metabolismo , Feminino , Expressão Gênica , Genes de Insetos , Hidroxilação , Dados de Sequência Molecular , Mutação , Fenótipo , Esteroide Hidroxilases/genética , Frações Subcelulares/metabolismo , Transfecção
17.
Proc Natl Acad Sci U S A ; 99(17): 11043-8, 2002 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-12177427

RESUMO

Five different enzymatic activities, catalyzed by both microsomal and mitochondrial cytochrome P450 monooxygenases (CYPs), are strongly implicated in the biosynthesis of ecdysone (E) from cholesterol. However, none of these enzymes have been characterized completely. The present data show that the wild-type genes of two members of the Halloween family of embryonic lethals, disembodied (dib) and shadow (sad), code for mitochondrial cytochromes P450 that mediate the last two hydroxylation reactions in the ecdysteroidogenic pathway in Drosophila, namely the C22- and C2-hydroxylases. When sad (CYP315A1) is transfected into Drosophila S2 cells, the cells metabolize 2-deoxyecdysone (2dE) to E and the [3H]ketotriol (2,22-dideoxyecdysone) to 22-deoxyecdysone. In contrast, dib (CYP302A1) is responsible for the conversion of the [3H]ketotriol to [3H]2dE. When cells are transfected with both dib and sad, they metabolize the [3H]ketotriol to [3H]E in high yield. The expression of sad and dib is concentrated within the individual segments of the developing epidermis when there is a surge of ecdysteroid midway through embryogenesis. This result occurs before the ring gland has developed and suggests that the embryonic epidermis is a site of ecdysteroid biosynthesis. This pattern then diminishes, and, during late embryogenesis, expression of both genes is concentrated in the prothoracic gland cells of the developing ring gland. Expression of dib and sad continues to be localized in this endocrine compartment during larval development, being maximal in both the late second and third instar larvae, about the time of the premolt peaks in the ecdysteroid titer.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Ecdisteroides/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/enzimologia , Embrião não Mamífero/fisiologia , Epiderme/enzimologia , Epiderme/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Hidroxilação , Larva , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA