Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999028

RESUMO

Tuberculosis is a serious public health problem worldwide. The search for new antibiotics has become a priority, especially with the emergence of resistant strains. A new family of imidazoquinoline derivatives, structurally analogous to triazolophthalazines, which had previously shown good antituberculosis activity, were designed to inhibit InhA, an essential enzyme for Mycobacterium tuberculosis survival. Over twenty molecules were synthesized and the results showed modest inhibitory efficacy against the protein. Docking experiments were carried out to show how these molecules could interact with the protein's substrate binding site. Disappointingly, unlike triazolophthlazines, these imidazoquinoline derivatives showed an absence of inhibition on mycobacterial growth.


Assuntos
Antituberculosos , Proteínas de Bactérias , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis , Oxirredutases , Quinolinas , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Antituberculosos/farmacologia , Antituberculosos/química , Antituberculosos/síntese química , Quinolinas/química , Quinolinas/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana , Sítios de Ligação , Estrutura Molecular
2.
Int J Antimicrob Agents ; : 107278, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069229

RESUMO

AIMS: The incidence of lung infections is increasing worldwide in individuals suffering from cystic fibrosis and chronic obstructive pulmonary diseases. Mycobacterium abscessus is associated to chronic lung deterioration in these populations. The intrinsic resistance of M. abscessus to most conventional antibiotics jeopardizes treatment success rates. To date no single drug has been developed targeting specifically M. abscessus. Our objective was to characterize the pyrithione-core drug-like small molecule named VOMG as a new compound active against M. abscessus and other pathogens. METHODS: We used a multidisciplinary approach including microbiological, chemical, biochemical and transcriptomics procedures to validate VOMG as a promising anti-M. abscessus drug candidate. RESULTS: We report for the first time the in vitro and in vivo bactericidal activity of VOMG against M. abscessus and other pathogens. Besides being active against M. abscessus biofilm, the compound showed a favourable pharmacology (ADME-Tox) profile. Frequency of resistance studies were unable to isolate resistant mutants. VOMG inhibits cell division, particularly the FtsZ enzyme. CONCLUSIONS: VOMG is a new drug-like molecule discovered against M. abscessus inhibiting cell division with broad spectrum activity against other microbial pathogens.

3.
Bioorg Chem ; 143: 107032, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128204

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a worldwide scourge with more than 10 million people affected yearly. Among the proteins essential for the survival of Mtb, InhA has been and is still clinically validated as a therapeutic target. A new family of direct diaryl ether inhibitors, not requiring prior activation by the catalase peroxidase enzyme KatG, has been designed with the ambition of fully occupying the InhA substrate-binding site. Thus, eleven compounds, featuring three pharmacophores within the same molecule, were synthesized. One of them, 5-(((4-(2-hydroxyphenoxy)benzyl)(octyl)amino)methyl)-2-phenoxyphenol (compound 21), showed good inhibitory activity against InhA with IC50 of 0.70 µM. The crystal structure of compound 21 in complex with InhA/NAD+ showed how the molecule fills the substrate-binding site as well as the minor portal of InhA. This study represents a further step towards the design of new inhibitors of InhA.


Assuntos
Antituberculosos , Imidazóis , Mycobacterium tuberculosis , Sulfonamidas , Tiofenos , Humanos , Antituberculosos/farmacologia , Antituberculosos/química , Éter , Éteres , Sítios de Ligação , Etil-Éteres , Proteínas de Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA