Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 23(1): 494, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264315

RESUMO

BACKGROUND: Neuropeptide Y (NPY) is an abundant neurohormone in human breast carcinomas that acts on a class of G-protein coupled receptors, of which NPY1R and NPY5R are the most highly expressed. This abundance is exploited for cancer imaging, but there is interest in pharmacological inhibition of the NPYRs to interrogate their functional relevance in breast cancer. We previously reported that NPY1R and NPY5R mRNA abundance is increased by hypoxia inducible factors, which sensitizes these receptors to NPY stimulation leading to enhanced migration and proliferation. METHODS/RESULTS: Here, we measured the effects of NPY1R and NPY5R antagonists in normoxia and hypoxia on migration, proliferation, invasion, and signaling in 2D and 3D models of breast cancer cell lines MDA-MB-231 and MCF7. Antagonizing NPY1R and/or NPY5R in hypoxia compared to normoxia more greatly reduced MAPK signaling, cell proliferation, cell migration and invasion, and spheroid growth and invasion. The estrogen receptor positive MCF7 cells were significantly less invasive in 3D spheres when NPY5R was specifically inhibited. There were some discrepancies in the responses of each cell line to the isoform-specific antagonists and oxygen availability, therefore further investigations are required to dissect the intricacies of NPYR signaling dynamics. In human breast tumor tissue, we show via immunofluorescence that NPY5R protein levels and colocalization with hypoxia correlate with advanced cancer, and NPY1R protein correlates with adverse outcomes. CONCLUSIONS: Antagonizing the NPYRs has been implicated as a treatment for a wide variety of diseases. Therefore, these antagonists may aid in the development of novel cancer therapeutics and patient-based treatment plans.


Assuntos
Neoplasias da Mama , Receptores de Neuropeptídeo Y , Humanos , Feminino , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Proliferação de Células , Hipóxia
2.
Methods Mol Biol ; 2614: 273-285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587131

RESUMO

Spheroids enable the study of tumors and tumor hypoxia using a more representative model of the physiological environment compared to 2D cell culture. Spheroids can be grown in a cell suspension or when adhered to a solid scaffold. The spheroid formation method used is dependent on cell type. Here we describe the most common spheroid formation methods, including hanging drop, low adhesion plates, hydrogel, micropatterned plates, and microfluidics. After spheroids are formed, they can be used for drug treatment trials and analyzed using Western Blots, qPCR, and microscopy. Microscopy can then be used to measure the invasiveness of cells when a basement membrane is added to spheroids and for monitoring changes in the proliferation, quiescent, and necrotic zones of spheroids.


Assuntos
Esferoides Celulares , Microambiente Tumoral , Técnicas de Cultura de Células/métodos , Hipóxia Tumoral , Linhagem Celular Tumoral
3.
J Biol Chem ; 298(3): 101645, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35093384

RESUMO

Neuropeptide Y (NPY) is an abundant neurohormone in the central and peripheral nervous system involved in feeding behavior, energy balance, nociception, and anxiety. Several NPY receptor (NPYR) subtypes display elevated expression in many cancers including in breast tumors where it is exploited for imaging and diagnosis. Here, we address how hypoxia, a common feature of the tumor microenvironment, influences the expression of the NPYRs. We show that NPY1R and NPY5R mRNA abundance is induced by hypoxia in a hypoxia inducible factor (HIF)-dependent manner in breast cancer cell lines MCF7 and MDA-MB-231. We demonstrate that HIFs bind to several genomic regions upstream of the NPY1R and NPY5R transcription start sites. In addition, the MAPK/ERK pathway is activated more rapidly upon NPY5R stimulation in hypoxic cells compared with normoxic cells. This pathway requires insulin-like growth factor 1 receptor (IGF1R) activity in normoxia, but not in hypoxic cells, which display resistance to the radiosensitizer and IGF1R inhibitor AG1024. Furthermore, hypoxic cells proliferate and migrate more when stimulated with NPY relative to normoxic cells and exhibit a more robust response to a Y5-specific agonist. Our data suggest that hypoxia-induced NPYRs render hypoxic cells more sensitive to NPY stimulation. Considering that breast tissue receives a constant supply of NPY, hypoxic breast tumors are the perfect storm for hyperactive NPYR. This study not only highlights a new relationship between the HIFs and NPYR expression and activity but may inform the use of chemotherapeutics targeting NPYRs and hypoxic cells.


Assuntos
Neoplasias da Mama , Neuropeptídeo Y , Receptores de Neuropeptídeo Y , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Células MCF-7 , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Neuropeptídeo Y/biossíntese , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Microambiente Tumoral
4.
Genetics ; 217(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33779749

RESUMO

Immune recognition in plants is governed by two major classes of receptors: pattern recognition receptors (PRRs) and nucleotide-binding leucine-rich repeat receptors (NLRs). Located at the cell surface, PRRs bind extracellular ligands originating from microbes (indicative of "non-self") or damaged plant cells (indicative of "infected-self"), and trigger signaling cascades to protect against infection. Located intracellularly, NLRs sense pathogen-induced physiological changes and trigger localized cell death and systemic resistance. Immune responses are under tight regulation in order to maintain homeostasis and promote plant health. In a forward-genetic screen to identify regulators of PRR-mediated immune signaling, we identified a novel allele of the membrane-attack complex and perforin (MACPF)-motif containing protein CONSTITUTIVE ACTIVE DEFENSE 1 (CAD1) resulting from a missense mutation in a conserved N-terminal cysteine. We show that cad1-5 mutants display deregulated immune signaling and symptoms of autoimmunity dependent on the lipase-like protein ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), suggesting that CAD1 integrity is monitored by the plant immune system. We further demonstrate that CAD1 localizes to both the cytosol and plasma membrane using confocal microscopy and subcellular fractionation. Our results offer new insights into immune homeostasis and provide tools to further decipher the intriguing role of MACPF proteins in plants.


Assuntos
Proteínas de Arabidopsis/genética , Ácido Aspártico Endopeptidases/genética , Imunidade Vegetal , Transdução de Sinais , Motivos de Aminoácidos , Arabidopsis , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação de Sentido Incorreto , Perforina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA