RESUMO
Melanoma is a highly malignant tumor, that stands as the most lethal form of skin cancer and is characterized by notable phenotypic plasticity and intratumoral heterogeneity. Melanoma plasticity is involved in tumor growth, metastasis and therapy resistance. Long non-coding RNAs (lncRNAs) could influence plasticity due to their regulatory function. However, their role and mode of action are poorly studied. Here, we show a relevance of lncRNA GRASLND in melanoma differentiation and IFNγ signaling. GRASLND knockdown revealed switching of differentiated, melanocytic melanoma cells towards a dedifferentiated, slow-proliferating and highly-invasive cell state. Interestingly, GRASLND is overexpressed in differentiated melanomas and associated with poor prognosis. Accordingly, we found GRASLND expressed in immunological "cold" tumors and it negatively correlates with gene signatures of immune response activation. In line, silencing of GRASLND under IFNγ enhanced the expression of IFNγ-stimulated genes, including HLA-I antigen presentation, demonstrating suppressive activity of GRASLND on IFNγ signaling. Our findings demonstrate that in differentiated melanomas elevated expression of GRASLND interferes with anti-tumor effects of IFNγ, suggesting a role of GRASLND in tumor immune evasion.
RESUMO
BACKGROUND: Immune checkpoint inhibition (ICI) currently is the most effective treatment to induce durable responses in metastatic melanoma. The aims of this study are the characterization of patients with early, late and non-response to ICI and analysis of survival outcomes in a real-world patient cohort. METHODS: Patients who received PD-1-based immunotherapy for non-resectable stage-IV melanoma in any therapy line were selected from the prospective multicenter real-world DeCOG study ADOREG-TRIM (NCT05750511). Patients showing complete (CR) or partial (PR) response already during the first 3 months of treatment (Early Responders, EarlyR) were compared to patients showing CR/PR at a later time (Late Responders, LateR), a stable disease (SD) and to patients showing progressive disease (Non-Responders, NonR). RESULTS: Of 522 patients, 8.2 % were EarlyR (n = 43), 19.0 % were LateR (n = 99), 37.0 % had a SD (n = 193) and 35.8 % were NonR (n = 187). EarlyR, LateR and SD patients had comparable baseline characteristics. Multivariate logbinomial regression analyses adjusted for age and sex revealed positive tumor PD-L1 (RR=1.99, 95 %-CI=1.14-3.46, p = 0.015), and normal serum CRP (RR=1.59, 95 %-CI=0.93-2.70, p = 0.036) as independently associated with the achievement of an early response compared to NonR. The median progression-free and overall survival was 46.0 months (95 % CI 19.1; NR) and 47.8 months (95 %-CI 36.9; NR) for EarlyR, NR (95 %-CI NR; NR) for LateR, 8.1 months (7.0; 10.4) and 35.4 months (29.2; NR) for SD, and 2.0 months (95 %-CI 1.9; 2.1) and 6.1 months (95 %-CI 4.6; 8.8) for NonR patients. CONCLUSION: Less than 10 % of metastatic melanoma patients achieved an early response during the first 3 months of PD-1-based immunotherapy. Early responders were not superior to late responders in terms of response durability and survival.
Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Receptor de Morte Celular Programada 1 , Humanos , Melanoma/tratamento farmacológico , Melanoma/imunologia , Melanoma/mortalidade , Melanoma/terapia , Melanoma/secundário , Melanoma/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Estudos Prospectivos , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/terapia , Imunoterapia/métodos , Fatores de Tempo , AdultoRESUMO
BACKGROUND: Identification of human leukocyte antigen (HLA) types from DNA-sequenced human samples is important in organ transplantation and cancer immunotherapy and remains a challenging task considering sequence homology and extreme polymorphism of HLA genes. RESULTS: We present Orthanq, a novel statistical model and corresponding application for transparent and uncertainty-aware quantification of haplotypes. We utilize our approach to perform HLA typing while, for the first time, reporting uncertainty of predictions and transparently observing mutations beyond reported HLA types. Using 99 gold standard samples from 1000 Genomes, Illumina Platinum Genomes and Genome In a Bottle projects, we show that Orthanq can provide overall superior accuracy and shorter runtimes than state-of-the-art HLA typers. CONCLUSIONS: Orthanq is the first approach that allows to directly utilize existing pangenome alignments and type all HLA loci. Moreover, it can be generalized for usages beyond HLA typing, e.g. for virus lineage quantification. Orthanq is available under https://orthanq.github.io .
Assuntos
Antígenos HLA , Haplótipos , Teste de Histocompatibilidade , Humanos , Haplótipos/genética , Antígenos HLA/genética , Teste de Histocompatibilidade/métodos , Software , Incerteza , Análise de Sequência de DNA/métodos , Modelos Estatísticos , AlgoritmosRESUMO
BACKGROUND: Melanomas lacking mutations in BRAF, NRAS and NF1 are frequently referred to as "triple wild-type" (tWT) melanomas. They constitute 5-10 % of all melanomas and remain poorly characterized regarding clinical characteristics and response to therapy. This study investigates the largest multicenter collection of tWT-melanomas to date. METHODS: Targeted next-generation sequencing of the TERT promoter and 29 melanoma-associated genes were performed on 3109 melanoma tissue samples of the prospective multicenter study ADOREG/TRIM of the DeCOG revealing 292 patients suffering from tWT-melanomas. Clinical characteristics and mutational patterns were analyzed. As subgroup analysis, we analyzed 141 tWT-melanoma patients receiving either anti-CTLA4 plus anti-PD1 or anti PD1 monotherapy as first line therapy in AJCC stage IV. RESULTS: 184 patients with cutaneous melanomas, 56 patients with mucosal melanomas, 34 patients with acral melanomas and 18 patients with melanomas of unknown origin (MUP) were included. A TERT promoter mutation could be identified in 33.2 % of all melanomas and 70.5 % of all tWT-melanomas harbored less than three mutations per sample. For the 141 patients with stage IV disease, mPFS independent of melanoma type was 6.2 months (95 % CI: 4-9) and mOS was 24.8 months (95 % CI: 14.2-53.4) after first line anti-CTLA4 plus anti-PD1 therapy. After first-line anti-PD1 monotherapy, mPFS was 4 months (95 %CI: 2.9-8.5) and mOS was 29.18 months (95 % CI: 17.5-46.2). CONCLUSIONS: While known prognostic factors such as TERT promoter mutations and TMB were equally distributed among patients who received either anti-CTLA4 plus anti-PD1 combination therapy or anti-PD1 monotherapy as first line therapy, we did not find a prolonged mPFS or mOS in either of those. For both therapy concepts, mPFS and mOS were considerably shorter than reported for melanomas with known oncogene mutations.
Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Mutação , Proteínas Proto-Oncogênicas B-raf , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/mortalidade , Melanoma/patologia , Melanoma/imunologia , Masculino , Inibidores de Checkpoint Imunológico/uso terapêutico , Feminino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas B-raf/genética , Idoso , Adulto , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/imunologia , Neurofibromina 1/genética , Estudos Prospectivos , Intervalo Livre de Progressão , Idoso de 80 Anos ou mais , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Telomerase/genética , GTP Fosfo-Hidrolases/genética , Regiões Promotoras Genéticas , Proteínas de MembranaRESUMO
Background: Screening for gene mutations has become routine clinical practice across numerous tumor entities, including melanoma. BAP1 gene mutations have been identified in various tumor types and acknowledged as a critical event in metastatic uveal melanoma, but their role in non-uveal melanoma remains inadequately characterized. Methods: A retrospective analysis of all melanomas sequenced in our department from 2014-2022 (n=2650) was conducted to identify BAP1 mutated samples. Assessment of clinical and genetic characteristics was performed as well as correlations with treatment outcome. Results: BAP1 mutations were identified in 129 cases and distributed across the entire gene without any apparent hot spots. Inactivating BAP1 mutations were more prevalent in uveal (55%) compared to non-uveal (17%) melanomas. Non-uveal BAP1 mutated melanomas frequently exhibited UV-signature mutations and had a significantly higher mutation load than uveal melanomas. GNAQ and GNA11 mutations were common in uveal melanomas, while MAP-Kinase mutations were frequent in non-uveal melanomas with NF1, BRAF V600 and NRAS Q61 mutations occurring in decreasing frequency, consistent with a strong UV association. Survival outcomes did not differ among non-uveal melanoma patients based on whether they received targeted or immune checkpoint therapy, or if their tumors harbored inactivating BAP1 mutations. Conclusion: In contrast to uveal melanomas, where BAP1 mutations serve as a significant prognostic indicator of an unfavorable outcome, BAP1 mutations in non-uveal melanomas are primarily considered passenger mutations and do not appear to be relevant from a prognostic or therapeutic perspective.
Assuntos
Melanoma , Mutação , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase , Neoplasias Uveais , Humanos , Ubiquitina Tiolesterase/genética , Melanoma/genética , Melanoma/mortalidade , Melanoma/terapia , Neoplasias Uveais/genética , Neoplasias Uveais/mortalidade , Neoplasias Uveais/terapia , Masculino , Proteínas Supressoras de Tumor/genética , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Adulto , Idoso de 80 Anos ou mais , PrognósticoRESUMO
Antibodies targeting the immune checkpoint molecules PD-1, PD-L1 and CTLA-4, administered alone or in combination with chemotherapy, are the standard of care in most patients with metastatic non-small-cell lung cancers. When given before curative surgery, tumor responses and improved event-free survival are achieved. New antibody combinations may be more efficacious and tolerable. In an ongoing, open-label phase 2 study, 60 biomarker-unselected, treatment-naive patients with resectable non-small-cell lung cancer were randomized to receive two preoperative doses of nivolumab (anti-PD-1) with or without relatlimab (anti-LAG-3) antibody therapy. The primary study endpoint was the feasibility of surgery within 43 days, which was met by all patients. Curative resection was achieved in 95% of patients. Secondary endpoints included pathological and radiographic response rates, pathologically complete resection rates, disease-free and overall survival rates, and safety. Major pathological (≤10% viable tumor cells) and objective radiographic responses were achieved in 27% and 10% (nivolumab) and in 30% and 27% (nivolumab and relatlimab) of patients, respectively. In 100% (nivolumab) and 90% (nivolumab and relatlimab) of patients, tumors and lymph nodes were pathologically completely resected. With 12 months median duration of follow-up, disease-free survival and overall survival rates at 12 months were 89% and 93% (nivolumab), and 93% and 100% (nivolumab and relatlimab). Both treatments were safe with grade ≥3 treatment-emergent adverse events reported in 10% and 13% of patients per study arm. Exploratory analyses provided insights into biological processes triggered by preoperative immunotherapy. This study establishes the feasibility and safety of dual targeting of PD-1 and LAG-3 before lung cancer surgery.ClinicalTrials.gov Indentifier: NCT04205552 .
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia Neoadjuvante , Nivolumabe , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Nivolumabe/uso terapêutico , Nivolumabe/administração & dosagem , Feminino , Masculino , Pessoa de Meia-Idade , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Proteína do Gene 3 de Ativação de Linfócitos , Adulto , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Antígenos CD , Idoso de 80 Anos ou maisRESUMO
To better understand intrinsic resistance to immune checkpoint blockade (ICB), we established a comprehensive view of the cellular architecture of the treatment-naive melanoma ecosystem and studied its evolution under ICB. Using single-cell, spatial multi-omics, we showed that the tumor microenvironment promotes the emergence of a complex melanoma transcriptomic landscape. Melanoma cells harboring a mesenchymal-like (MES) state, a population known to confer resistance to targeted therapy, were significantly enriched in early on-treatment biopsies from non-responders to ICB. TCF4 serves as the hub of this landscape by being a master regulator of the MES signature and a suppressor of the melanocytic and antigen presentation transcriptional programs. Targeting TCF4 genetically or pharmacologically, using a bromodomain inhibitor, increased immunogenicity and sensitivity of MES cells to ICB and targeted therapy. We thereby uncovered a TCF4-dependent regulatory network that orchestrates multiple transcriptional programs and contributes to resistance to both targeted therapy and ICB in melanoma.
Assuntos
Melanoma , Humanos , Redes Reguladoras de Genes , Imunoterapia , Melanócitos , Melanoma/tratamento farmacológico , Melanoma/genética , Fator de Transcrição 4/genética , Microambiente TumoralRESUMO
CD4+ T cells play an important role in immune responses against pathogens and cancer cells. Although their main task is to provide help to other effector immune cells, a growing number of infections and cancer entities have been described in which CD4+ T cells exhibit direct effector functions against infected or transformed cells. The most important cell type in this context are cytotoxic CD4+ T cells (CD4+ CTL). In infectious diseases anti-viral CD4+ CTL are mainly found in chronic viral infections. Here, they often compensate for incomplete or exhausted CD8+ CTL responses. The induction of CD4+ CTL is counter-regulated by Tregs, most likely because they can be dangerous inducers of immunopathology. In viral infections, CD4+ CTL often kill via the Fas/FasL pathway, but they can also facilitate the exocytosis pathway of killing. Thus, they are very important effectors to keep persistent virus in check and guarantee host survival. In contrast to viral infections CD4+ CTL attracted attention as direct anti-tumor effectors in solid cancers only recently. Anti-tumor CD4+ CTL are defined by the expression of cytolytic markers and have been detected within the lymphocyte infiltrates of different human cancers. They kill tumor cells in an antigen-specific MHC class II-restricted manner not only by cytolysis but also by release of IFNγ. Thus, CD4+ CTL are interesting tools for cure approaches in chronic viral infections and cancer, but their potential to induce immunopathology has to be carefully taken into consideration.
Assuntos
Neoplasias , Linfócitos T Citotóxicos , Humanos , Linfócitos T CD4-PositivosRESUMO
Intorduction: Chondroitin sulfate proteoglycan 4 (CSPG4), also known as high molecular weight-melanoma associated antigen, is expressed in melanoma but also other tumor entities and constitutes an attractive target for immunotherapeutic approaches. While recent preclinical reports focused on anti-CSPG4 chimeric antigen receptors (CAR), we here explore T-cell receptor (TCR)-based approaches targeting CSPG4. Methods: The TCRs of two CSPG4-reactive T-cell clones (11C/73 and 2C/165) restricted by the highly prevalent HLA-C*07:01 allele were isolated and the respective αßTCR pairs were retrovirally expressed in CRISPR/Cas9-edited TCR-knockout T cells for functional testing. We also combined alpha and beta TCR chains derived from 11C/73 and 2C/165 in a cross-over fashion to assess for hemichain dominance. CSPG4+ melanoma, glioblastoma and lung cancer cell lines were identified and, if negative, retrovirally transduced with HLA-C*07:01. Results: Functional tests confirmed specific recognition of CSPG4+HLA-C*07:01+ target cells by the αßTCR retrieved from the parental T-cell clones and in part also by the cross-over TCR construct 2Cα-11Cß. Despite high surface expression, the 11Cα-2Cß combination, however, was not functional. Discussion: Collectively, 11C/73- and 2C/165-expressing T cells specifically and efficiently recognized CSPG4+HLA-C*07:01+ cancer cells which warrants further preclinical and clinical evaluation of these TCRs.
Assuntos
Antígenos HLA-C , Melanoma , Humanos , Antígenos HLA-C/genética , Receptores de Antígenos de Linfócitos T , Linfócitos T , Proteínas de Membrana , Proteoglicanas de Sulfatos de CondroitinaRESUMO
Primary and acquired therapy resistance is a major problem in patients with BRAF-mutant melanomas being treated with BRAF and MEK inhibitors (BRAFI, MEKi). Therefore, development of alternative therapy regimes is still required. In this regard, new drug combinations targeting different pathways to induce apoptosis could offer promising alternative approaches. Here, we investigated the combination of proteasome and Kv1.3 potassium channel inhibition on chemo-resistant, BRAF inhibitor-resistant as well as sensitive human melanoma cells. Our experiments demonstrated that all analyzed melanoma cell lines were sensitive to proteasome inhibitor treatment at concentrations that are not toxic to primary human fibroblasts. To further reduce proteasome inhibitor-associated side effects, and to foster apoptosis, potassium channels, which are other targets to induce pro-apoptotic effects in cancer cells, were blocked. In support, combined exposure of melanoma cells to proteasome and Kv1.3 channel inhibitor resulted in synergistic effects and significantly reduced cell viability. On the molecular level, enhanced apoptosis correlated with an increase of intracellular Kv1.3 channels and pro-apoptotic proteins such as Noxa and Bak and a reduction of anti-apoptotic proteins. Thus, use of combined therapeutic strategies triggering different apoptotic pathways may efficiently prevent the outgrowth of drug-resistant and -sensitive BRAF-mutant melanoma cells. In addition, this could be the basis for an alternative approach to treat other tumors expressing mutated BRAF such as non-small-cell lung cancer.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Melanoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Canal de Potássio Kv1.3/genética , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Melanoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Reguladoras de Apoptose/metabolismo , MutaçãoRESUMO
Recent studies suggest that BRAFV600-mutated melanomas in particular respond to dual anti-programmed cell death protein 1 (PD-1) and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) immune checkpoint inhibition (ICI). Here we identified an over-representation of interleukin (IL)-17-type 17 helper T (TH17) gene expression signatures (GES) in BRAFV600-mutated tumors. Moreover, high baseline IL-17 GES consistently predicted clinical responses in dual-ICI-treated patient cohorts but not in mono anti-CTLA-4 or anti-PD-1 ICI cohorts. High IL-17 GES corresponded to tumor infiltration with T cells and neutrophils. Accordingly, high neutrophil infiltration correlated with clinical response specifically to dual ICI, and tumor-associated neutrophils also showed strong IL-17-TH17 pathway activity and T cell activation capacity. Both the blockade of IL-17A and the depletion of neutrophils impaired dual-ICI response and decreased T cell activation. Finally, high IL-17A levels in the blood of patients with melanoma indicated a higher global TH17 cytokine profile preceding clinical response to dual ICI but not to anti-PD-1 monotherapy, suggesting a future role as a biomarker for patient stratification.
Assuntos
Interleucina-17 , Melanoma , Humanos , Interleucina-17/genética , Interleucina-17/uso terapêutico , Antígeno CTLA-4/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Proto-Oncogênicas B-raf/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genéticaRESUMO
PURPOSE: Recent studies have demonstrated HLA class II (HLA-II)-dependent killing of melanoma cells by cytotoxic CD4 T cells. We investigated evolution of HLA-II-loss tumors that escape cytotoxic CD4 T-cell activity and contribute to immunotherapy resistance. EXPERIMENTAL DESIGN: Melanoma cells from longitudinal metastases were studied for constitutive and IFN-inducible HLA-II expression, sensitivity towards autologous CD4 T cells, and immune evasion by HLA-II loss. Clinical significance of HLA-II-low tumors was determined by analysis of transcriptomic data sets from patients with immune checkpoint blockade (ICB). RESULTS: Analysis of longitudinal samples revealed strong intermetastatic heterogeneity in melanoma cell-intrinsic HLA-II expression and subclonal HLA-II loss. Tumor cells from early lesions either constitutively expressed HLA-II, sensitizing to cytotoxic CD4 T cells, or induced HLA-II and gained CD4 T-cell sensitivity in the presence of IFNγ. In contrast, late outgrowing subclones displayed a stable CD4 T-cell-resistant HLA-II-loss phenotype. These cells lacked not only constitutive but also IFNγ-inducible HLA-II due to JAK1/2-STAT1 pathway inactivation. Coevolution of JAK1/2 deficiency and HLA-II loss established melanoma cross-resistance to IFNγ and CD4 T cells, as detected in distinct stage IV metastases. In line with their immune-evasive phenotype, HLA-II-low melanomas showed reduced CD4 T-cell infiltrates and correlated with disease progression under ICB. CONCLUSIONS: Our study links melanoma resistance to CD4 T cells, IFNγ, and ICB at the level of HLA-II, highlighting the significance of tumor cell-intrinsic HLA-II antigen presentation in disease control and calling for strategies to overcome its downregulation for improvement of patient outcome.
RESUMO
Recurrent neoepitopes are cancer-specific antigens common among groups of patients and therefore ideal targets for adoptive T cell therapy. The neoepitope FSGEYIPTV carries the Rac1P29S amino acid change caused by a c.85C>T missense mutation, which is the third most common hotspot mutation in melanoma. Here, we isolated and characterized TCRs to target this HLA-A*02:01-binding neoepitope by adoptive T cell therapy. Peptide immunization elicited immune responses in transgenic mice expressing a diverse human TCR repertoire restricted to HLA-A*02:01, which enabled isolation of high-affinity TCRs. TCR-transduced T cells induced cytotoxicity against Rac1P29S expressing melanoma cells and we observed regression of Rac1P29S expressing tumors in vivo after adoptive T cell therapy (ATT). Here we found that a TCR raised against a heterologous mutation with higher peptide-MHC affinity (Rac2P29L) more efficiently targeted the common melanoma mutation Rac1P29S. Overall, our study provides evidence for the therapeutic potential of Rac1P29S-specific TCR-transduced T cells and reveal a novel strategy by generating more efficient TCRs by heterologous peptides.
Assuntos
Melanoma , Animais , Camundongos , Humanos , Receptores de Antígenos de Linfócitos T , Membrana Celular , Reparo do DNA , Camundongos Transgênicos , Antígenos HLA-ARESUMO
Large genome-scale studies are deposited in various public sequence repositories. However, their access and analysis can be non-trivial to infrequent users. Here, we present a new database connecting whole transcriptomes with clinical data for straight-forward access and analysis of patient-specific samples. Users can perform association tests of survival and gene expression across different cohorts, identify cell-type expressions, or correlate the presence of immune cells. In summary, we present a new data hub for bench scientists to perform replication and discovery studies.
Assuntos
Melanoma , Humanos , TranscriptomaRESUMO
BACKGROUND: Plasma-derived tumour-specific cell-free nucleic acids are increasingly utilized as a minimally invasive, real-time biomarker approach in many solid tumours. Circulating tumour DNA of melanoma-specific mutations is currently the best studied liquid biopsy biomarker for melanoma. However, the combination of hotspot genetic alterations covers only around 80% of all melanoma patients. Therefore, alternative approaches are needed to enable the follow-up of all genotypes, including wild-type. METHODS: We identified KPNA2, DTL, BACE2 and DTYMK messenger RNA (mRNA) upregulated in melanoma versus nevi tissues by unsupervised data mining (N = 175 melanoma, N = 20 normal skin, N = 6 benign nevi) and experimentally confirmed differential mRNA expression in vitro (N = 18 melanoma, N = 8 benign nevi). Circulating cell-free RNA (cfRNA) was analysed in 361 plasma samples (collected before and during therapy) from 100 melanoma patients and 18 healthy donors. Absolute cfRNA copies were quantified on droplet digital PCR. RESULTS: KPNA2, DTL, BACE2 and DTYMK cfRNA demonstrated high diagnostic accuracy between melanoma patients' and healthy donors' plasma (AUC > 86%, p < .0001). cfRNA copies increased proportionally with increasing tumour burden independently of demographic variables and even remained elevated in individuals with radiological absence of disease. Re-analysis of single-cell transcriptomes revealed a pan-tumour origin of cfRNA, including endothelial, cancer-associated fibroblasts, macrophages and B cells beyond melanoma cells as cellular sources. Low baseline cfRNA levels were associated with significantly longer progression-free survival (PFS) (KPNA2 HR = .54, p = .0362; DTL HR = .60, p = .0349) and overall survival (KPNA2 HR = .52, p = .0237; BACE2 HR = .55, p = .0419; DTYMK HR = .43, p = .0393). Lastly, we found that cfRNA copies significantly increased during therapy in non-responders compared to responders regardless of therapy and mutational subtypes and that the increase of KPNA2 (HR = 1.73, p = .0441) and DTYMK (HR = 1.82, p = .018) cfRNA during therapy was predictive of shorter PFS. CONCLUSIONS: In sum, we identified a new panel of cfRNAs for a pan-tumour liquid biopsy approach and demonstrated its utility as a prognostic, therapy-monitoring tool independent of the melanoma mutational genotype.
Assuntos
Ácidos Nucleicos Livres , Melanoma , Nevo , Humanos , Biomarcadores Tumorais/genética , Melanoma/genética , Melanoma/patologia , Ácidos Nucleicos Livres/genética , Mutação , Genótipo , RNA MensageiroRESUMO
Melanocytic neoplasms have been genetically characterized in detail during the last decade. Recurrent CTNNB1 exon 3 mutations have been recognized in the distinct group of melanocytic tumors showing deep penetrating nevus-like morphology. In addition, they have been identified in 1-2% of advanced melanoma. Performing a detailed genetic analysis of difficult-to-classify nevi and melanomas with CTNNB1 mutations, we found that benign tumors (nevi) show characteristic morphological, genetic and epigenetic traits, which distinguish them from other nevi and melanoma. Malignant CTNNB1-mutant tumors (melanomas) demonstrated a different genetic profile, instead grouping clearly with other non-CTNNB1 melanomas in methylation assays. To further evaluate the role of CTNNB1 mutations in melanoma, we assessed a large cohort of clinically sequenced melanomas, identifying 38 tumors with CTNNB1 exon 3 mutations, including recurrent S45 (n = 13, 34%), G34 (n = 5, 13%), and S27 (n = 5, 13%) mutations. Locations and histological subtype of CTNNB1-mutated melanoma varied; none were reported as showing deep penetrating nevus-like morphology. The most frequent concurrent activating mutations were BRAF V600 (n = 21, 55%) and NRAS Q61 (n = 13, 34%). In our cohort, four of seven (58%) and one of nine (11%) patients treated with targeted therapy (BRAF and MEK Inhibitors) or immune-checkpoint therapy, respectively, showed disease control (partial response or stable disease). In summary, CTNNB1 mutations are associated with a unique melanocytic tumor type in benign tumors (nevi), which can be applied in a diagnostic setting. In advanced disease, no clear characteristics distinguishing CTNNB1-mutant from other melanomas were observed; however, studies of larger, optimally prospective, cohorts are warranted.
RESUMO
Accurate classification of melanocytic tumors is important for prognostic evaluation, treatment and follow-up protocols of patients. The majority of melanocytic proliferations can be classified solely based on clinical and pathological criteria, however in select cases a definitive diagnostic assessment remains challenging and additional diagnostic biomarkers would be advantageous. We analyzed melanomas, nevi, Spitz nevi and atypical spitzoid tumors using parallel sequencing (exons of 611 genes and 507 gene translocation analysis) and methylation arrays (850k Illumina EPIC). By combining detailed genetic and epigenetic analysis with reference-based and reference-free DNA methylome deconvolution we compared Spitz nevi to nevi and melanoma and assessed the potential for these methods in classifying challenging spitzoid tumors. Results were correlated with clinical and histologic features. Spitz nevi were found to cluster independently of nevi and melanoma and demonstrated a different mutation profile. Multiple copy number alterations and TERT promoter mutations were identified only in melanomas. Genome-wide methylation in Spitz nevi was comparable to benign nevi while the Leukocytes UnMethylation for Purity (LUMP) algorithm in Spitz nevi was comparable to melanoma. Histologically difficult to classify Spitz tumor cases were assessed which, based on methylation arrays, clustered between Spitz nevi and melanoma and in terms of genetic profile or copy number variations demonstrated worrisome features suggesting a malignant neoplasm. Comprehensive sequencing and methylation analysis verify Spitz nevi as an independent melanocytic entity distinct from both nevi and melanoma. Combined genetic and methylation assays can offer additional insights in diagnosing difficult to classify Spitzoid tumors.
Assuntos
Melanoma , Nevo de Células Epitelioides e Fusiformes , Paraganglioma , Neoplasias Cutâneas , Variações do Número de Cópias de DNA , Diagnóstico Diferencial , Humanos , Melanoma/diagnóstico , Melanoma/genética , Melanoma/patologia , Metilação , Nevo de Células Epitelioides e Fusiformes/diagnóstico , Nevo de Células Epitelioides e Fusiformes/genética , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , SíndromeRESUMO
BACKGROUND: Immune-stimulatory agents, like agonists of the innate immune receptor RIG-I, are currently tested in clinical trials as an intratumoral treatment option for patients with unresectable melanoma, aiming to enhance anti-tumor T cell responses. Switching of melanoma toward a dedifferentiated cell state has recently been linked to T cell and therapy resistance. It remains to be determined whether RIG-I agonists affect melanoma differentiation, potentially leading to T cell resistance. METHODS: Patient metastases-derived melanoma cell lines were treated with the synthetic RIG-I agonist 3pRNA, and effects on tumor cell survival, phenotype and differentiation were determined. Transcriptomic data sets from cell lines and metastases were analyzed for associations between RIG-I (DDX58) and melanoma differentiation markers and used to define signaling pathways involved in RIG-I-driven dedifferentiation. The impact of 3pRNA-induced melanoma dedifferentiation on CD8 T cell activation was studied in autologous tumor T cell models. RESULTS: RIG-I activation by 3pRNA induced apoptosis in a subpopulation of melanoma cells, while the majority of tumor cells switched into a non-proliferative cell state. Those persisters displayed a dedifferentiated cell phenotype, marked by downregulation of the melanocytic lineage transcription factor MITF and its target genes, including melanoma differentiation antigens (MDA). Transition into the MITFlow/MDAlow cell state was JAK-dependent, with some cells acquiring nerve growth factor receptor expression. MITFlow/MDAlow persisters switched back to the proliferative differentiated cell state when RIG-I signaling declined. Consistent with our in vitro findings, an association between melanoma dedifferentiation and high RIG-I (DDX58) levels was detected in transcriptomic data from patient metastases. Notably, despite their dedifferentiated cell phenotype, 3pRNA-induced MITFlow/MDAlow persisters were still efficiently targeted by autologous CD8 tumor-infiltrating T lymphocytes (TILs). CONCLUSIONS: Our results demonstrate that RIG-I signaling in melanoma cells drives a transient phenotypic switch toward a non-proliferative dedifferentiated persister cell state. Despite their dedifferentiation, those persisters are highly immunogenic and sensitive toward autologous TILs, challenging the concept of melanoma dedifferentiation as a general indicator of T cell resistance. In sum, our findings support the application of RIG-I agonists as a therapeutic tool for the generation of long-term clinical benefit in non-resectable melanoma.
Assuntos
Melanoma , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Humanos , Imunidade Inata , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Transdução de SinaisRESUMO
Melanoma is a highly plastic tumor characterized by dynamic interconversion of different cell identities depending on the biological context. Melanoma cells with high expression of the H3K4 demethylase KDM5B (JARID1B) rest in a slow-cycling, yet reversible persister state. Over time, KDM5Bhigh cells can promote rapid tumor repopulation with equilibrated KDM5B expression heterogeneity. The cellular identity of KDM5Bhigh persister cells has not been studied so far, missing an important cell state-directed treatment opportunity in melanoma. Here, we have established a doxycycline-titratable system for genetic induction of permanent intratumor expression of KDM5B and screened for chemical agents that phenocopy this effect. Transcriptional profiling and cell functional assays confirmed that the dihydropyridine 2-phenoxyethyl 4-(2-fluorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa-hydro-quinoline-3-carboxylate (termed Cpd1) supports high KDM5B expression and directs melanoma cells towards differentiation along the melanocytic lineage and to cell cycle-arrest. The high KDM5B state additionally prevents cell proliferation through negative regulation of cytokinetic abscission. Moreover, treatment with Cpd1 promoted the expression of the melanocyte-specific tyrosinase gene specifically sensitizing melanoma cells for the tyrosinase-processed antifolate prodrug 3-O-(3,4,5-trimethoxybenzoyl)-(-)-epicatechin (TMECG). In summary, our study provides proof-of-concept for a dual hit strategy in melanoma, in which persister state-directed transitioning limits tumor plasticity and primes melanoma cells towards lineage-specific elimination.