Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; 22(11): e2200225, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36200655

RESUMO

Polyzwitterions are generally known for their anti-adhesive properties, including resistance to protein and cell adhesion, and overall high bio-inertness. Yet there are a few polyzwitterions to which mammalian cells do adhere. To understand the structural features of this behavior, a panel of polyzwitterions with different functional groups and overall degrees of hydrophobicity is analyzed here, and their physical and biological properties are correlated to these structural differences. Cell adhesion is focused on, which is the basic requirement for cell viability, proliferation, and growth. With the here presented polyzwitterion panel, three different types of cell-surface interactions are observed: adhesion, slight attachment, and cell repellency. Using immunofluorescence methods, it is found that human keratinocytes (HaCaT) form focal adhesions on the cell-adhesive polyzwitterions, but not on the sample that has only slight cell attachment. Gene expression analysis indicates that HaCaT cells cultivated in the presence of a non-adhesive polyzwitterion have up-regulated inflammatory and apoptosis-related cell signaling pathways, while the gene expression of HaCaT cells grown on a cell-adhesive polyzwitterion does not differ from the gene expression of the growth control, and thus can be defined as fully cell-compatible.


Assuntos
Queratinócitos , Metacrilatos , Animais , Humanos , Adesão Celular , Metacrilatos/química , Queratinócitos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Expressão Gênica , Mamíferos
2.
Microorganisms ; 9(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34361863

RESUMO

Antimicrobial surface modifications are required to prevent biomaterial-associated biofilm infections, which are also a major concern for oral implants. The aim of this study was to evaluate the influence of three different coatings on the biofilm formed by human saliva. Biofilms grown from human saliva on three different bioactive poly(oxanorbornene)-based polymer coatings (the protein-repellent PSB: poly(oxanorbornene)-based poly(sulfobetaine), the protein-repellent and antimicrobial PZI: poly(carboxyzwitterion), and the mildly antimicrobial and protein-adhesive SMAMP: synthetic mimics of antimicrobial peptides) were analyzed and compared with the microbial composition of saliva, biofilms grown on uncoated substrates, and biofilms grown in the presence of chlorhexidine digluconate. It was found that the polymer coatings significantly reduced the amount of adherent bacteria and strongly altered the microbial composition, as analyzed by 16S RNA sequencing. This may hold relevance for maintaining oral health and the outcome of oral implants due to the existing synergism between the host and the oral microbiome. Especially the reduction of some bacterial species that are associated with poor oral health such as Tannerella forsythia and Fusobacterium nucleatum (observed for PSB and SMAMP), and Prevotella denticola (observed for all coatings) may positively modulate the oral biofilm, including in situ.

3.
Macromol Rapid Commun ; 42(18): e2100051, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34028928

RESUMO

Surfaces coated with polyzwitterions are most well-known for their ability to resist protein adsorption. In this article, a surface-attached hydrophobically modified poly(carboxybetaine) is presented. When protonated by changes of the pH of the surrounding medium, this protein-repellent polyzwitterion switches to a polycationic state in which it is antimicrobially active and protein-adhesive. The pH range in which these two states exist are recorded by zeta potential measurements. Adsorption studies at different pH values (monitored by surface plasmon resonance spectroscopy) confirm that the adhesion of protein is pH dependent and reversible, that is, protein can be released upon a pH change from pH 3 to pH 7.4. At physiological pH, the poly(carboxyzwitterion) is antimicrobially active, presumably because it becomes protonated by bacterial metabolites during the antimicrobial activity assay. Stability studies confirm that the here presented material is storage-stable, yet hydrolyses after longer incubation in aqueous media.


Assuntos
Anti-Infecciosos , Polímeros , Adsorção , Antibacterianos , Anti-Infecciosos/farmacologia , Polieletrólitos , Propriedades de Superfície
4.
Molecules ; 24(5)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841576

RESUMO

In this study, we investigate how a surface structure underneath a surface-attached polymer coating affects the bioactivity of the resulting material. To that end, structured surfaces were fabricated using colloidal lithography (lateral dimensions: 200 nm to 1 µm, height ~15 to 50 nm). The surface structures were further functionalized either with antimicrobial, cell-adhesive polycations or with protein-repellent polyzwitterions. The materials thus obtained were compared to non-functionalized structured surfaces and unstructured polymer monolayers. Their physical properties were studied by contact-angle measurements and atomic force microscopy (AFM). Protein adhesion was studied by surface plasmon resonance spectroscopy, and the antimicrobial activity against Escherichia coli bacteria was tested. The growth of human mucosal gingiva keratinocytes on the materials was analyzed using the Alamar blue assay, optical microscopy, and live-dead staining. The data shows that the underlying surface structure itself reduced protein adhesion and also bacterial adhesion, as evidenced by increased antimicrobial activity. It also enhanced cell adhesion to the surfaces. Particularly in combination with the adhesive polycations, the surfaces increased the cell growth compared to the unstructured reference materials. Thus, functionalizing structured surfaces with adhesive polymer could be a valuable tool for improved tissue integration.


Assuntos
Polímeros/química , Propriedades de Superfície , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Materiais Biocompatíveis/química , Sobrevivência Celular , Queratinócitos/metabolismo , Microscopia de Força Atômica , Proteínas/química , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA