Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(8): 4527-4533, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36789888

RESUMO

Electrons in solids often adopt complex patterns of chemical bonding driven by the competition between energy gains from covalency and delocalization, and energy costs of double occupation to satisfy Pauli exclusion, with multiple intermediate states in the transition between highly localized, and magnetic, and delocalized, and nonmagnetic limits. Herein, we report a chemical pressure-driven transition from a proper Mn magnetic ordering phase transition to a Mn magnetic phase crossover in EuMn2P2 the limiting end member of the EuMn2X2 (X = Sb, As, P) family of layered materials. This loss of a magnetic ordering occurs despite EuMn2P2 remaining an insulator at all temperatures, and with a phase transition to long-range Eu antiferromagnetic order at TN ≈ 17 K. The absence of a Mn magnetic phase transition contrasts with the formation of long-range Mn order at T ≈ 130 K in isoelectronic EuMn2Sb2 and EuMn2As2. Temperature-dependent specific heat and 31P NMR measurements provide evidence for the development of short-range Mn magnetic correlations from T ≈ 250-100 K, interpreted as a precursor to covalent bond formation. Density functional theory calculations demonstrate an unusual sensitivity of the band structure to the details of the imposed Mn and Eu magnetic order, with an antiferromagnetic Mn arrangement required to recapitulate an insulating state. Our results imply a picture in which long-range Mn magnetic order is suppressed by chemical pressure, but that antiferromagnetic correlations persist, narrowing bands and producing an insulating state.

2.
ACS Nano ; 13(8): 9457-9463, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31310516

RESUMO

Incorporating magnetism into two-dimensional (2D) van der Waals (vdW) heterostructures is crucial for the development of functional electronic and magnetic devices. Here, we show that Nb3X8 (X = Cl, Br) is a family of 2D layered trimerized kagomé magnets that are paramagnetic at high temperatures and undergo a first-order phase transition on cooling to a singlet magnetic state. X-ray diffraction shows that a rearrangement of the vdW stacking accompanies the magnetic transition, with high- and low-temperature phases consistent with scanning transmission electron microscopy images of the end members α-Nb3Cl8 and ß-Nb3Br8. The temperature of this transition is systematically varied across the solid solution Nb3Cl8-xBrx (x = 0-8), with x = 6 having transitions near room temperature. The solid solution also varies the optical properties, which are further modulated by the phase transition. As such, they provide a platform on which to understand and exploit the interplay between dimensionality, magnetism, and optoelectronic behavior in vdW materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA