Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Clin Med ; 11(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35743356

RESUMO

Identifying patients' immune system status has become critical to managing SARS-CoV-2 infection and avoiding the appearance of secondary infections during a hospital stay. Despite the high volume of research, robust severity and outcome markers are still lacking in COVID-19. We recruited 87 COVID-19 patients and analyzed, by unbiased automated software, 356 parameters at baseline emergency department admission including: high depth immune phenotyping and immune checkpoint expression by spectral flow cytometry, cytokines and other soluble molecules in plasma as well as routine clinical variables. We identified 69 baseline alterations in the expression of immune checkpoints, Ig-like V type receptors and other immune population markers associated with severity (O2 requirement). Thirty-four changes in these markers/populations were associated with secondary infection appearance. In addition, through a longitudinal sample collection, we described the changes which take place in the immune system of COVID-19 patients during secondary infections and in response to corticosteroid treatment. Our study provides information about immune checkpoint molecules and other less-studied receptors with Ig-like V-type domains such as CD108, CD226, HVEM (CD270), B7H3 (CD276), B7H5 (VISTA) and GITR (CD357), defining these as novel interesting molecules in severe and corticosteroids-treated acute infections.

3.
World J Gastrointest Oncol ; 14(1): 295-318, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35116118

RESUMO

BACKGROUND: Colorectal cancer (CRC) accounts for 9.4% of overall cancer deaths, ranking second after lung cancer. Despite the large number of factors tested to predict their outcome, most patients with similar variables show big differences in survival. Moreover, right-sided CRC (RCRC) and left-sided CRC (LCRC) patients exhibit large differences in outcome after surgical intervention as assessed by preoperative blood leukocyte status. We hypothesised that stronger indexes than circulating (blood) leukocyte ratios to predict RCRC and LCRC patient outcomes will result from combining both circulating and infiltrated (tumour/peritumour fixed tissues) concentrations of leukocytes. AIM: To seek variables involving leukocyte balances in peripheral blood and tumour tissues and to predict the outcome of CRC patients. METHODS: Sixty-five patients diagnosed with colon adenocarcinoma by the Digestive Surgery Service of the La Paz University Hospital (Madrid, Spain) were enrolled in this study: 43 with RCRC and 22 with LCRC. Patients were followed-up from January 2017 to March 2021 to record overall survival (OS) and recurrence-free survival (RFS) after surgical interventions. Leukocyte concentrations in peripheral blood were determined by routine laboratory protocols. Paraffin-fixed samples of tumour and peritumoural tissues were assessed for leukocyte concentrations by immunohistochemical detection of CD4, CD8, and CD14 marker expression. Ratios of leukocyte concentration in blood and tissues were calculated and evaluated for their predictor values for OS and RFS with Spearman correlations and Cox univariate and multivariate proportional hazards regression, followed by the calculation of the receiver-operating characteristic and area under the curve (AUC) and the determination of Youden's optimal cutoff values for those variables that significantly correlated with either RCRC or LCRC patient outcomes. RCRC patients from the cohort were randomly assigned to modelling and validation sets, and clinician-friendly nomograms were developed to predict OS and RFS from the respective significant indexes. The accuracy of the model was evaluated using calibration and validation plots. RESULTS: The relationship of leukocyte ratios in blood and peritumour resulted in six robust predictors of worse OS in RCRC: CD8+ lymphocyte content in peritumour (CD8pt, AUC = 0.585, cutoff < 8.250, P = 0.0077); total lymphocyte content in peritumour (CD4CD8pt, AUC = 0.550, cutoff < 10.160, P = 0.0188); lymphocyte-to-monocyte ratio in peritumour (LMRpt, AUC = 0.807, cutoff < 3.185, P = 0.0028); CD8+ LMR in peritumour (CD8MRpt, AUC = 0.757, cutoff < 1.650, P = 0.0007); the ratio of blood LMR to LMR in peritumour (LMRb/LMRpt, AUC = 0.672, cutoff > 0.985, P = 0.0244); and the ratio of blood LMR to CD8+ LMR in peritumour (LMRb/CD8MRpt, AUC = 0.601, cutoff > 1.485, P = 0.0101). In addition, three robust predictors of worse RFS in RCRC were found: LMRpt (AUC = 0.737, cutoff < 3.185, P = 0.0046); LMRb/LMRpt (AUC = 0.678, cutoff > 0.985, P = 0.0155) and LMRb/CD8MRpt (AUC = 0.615, cutoff > 1.485, P = 0.0141). Furthermore, the ratio of blood LMR to CD4+ LMR in peritumour (LMRb/CD4MRpt, AUC = 0.786, cutoff > 10.570, P = 0.0416) was found to robustly predict poorer OS in LCRC patients. The nomograms showed moderate accuracy in predicting OS and RFS in RCRC patients, with concordance index of 0.600 and 0.605, respectively. CONCLUSION: Easily obtainable variables at preoperative consultation, defining the status of leukocyte balances between peripheral blood and peritumoural tissues, are robust predictors for OS and RFS of both RCRC and LCRC patients.

4.
Cell Rep ; 38(2): 110235, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34986327

RESUMO

We have analyzed BNT162b2 vaccine-induced immune responses in naive subjects and individuals recovered from coronavirus disease 2019 (COVID-19), both soon after (14 days) and later after (almost 8 months) vaccination. Plasma spike (S)-specific immunoglobulins peak after one vaccine shot in individuals recovered from COVID-19, while a second dose is needed in naive subjects, although the latter group shows reduced levels all along the analyzed period. Despite how the neutralization capacity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mirrors this behavior early after vaccination, both groups show comparable neutralizing antibodies and S-specific B cell levels late post-vaccination. When studying cellular responses, naive individuals exhibit higher SARS-CoV-2-specific cytokine production, CD4+ T cell activation, and proliferation than do individuals recovered from COVID-19, with patent inverse correlations between humoral and cellular variables early post-vaccination. However, almost 8 months post-vaccination, SARS-CoV-2-specific responses are comparable between both groups. Our data indicate that a previous history of COVID-19 differentially determines the functional T and B cell-mediated responses to BNT162b2 vaccination over time.


Assuntos
Vacina BNT162/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Linfócitos B/virologia , COVID-19/virologia , Chlorocebus aethiops , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Ativação Linfocitária/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/métodos , Células Vero
6.
Pathogens ; 10(8)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34451494

RESUMO

The emergence of SARS-CoV-2 in late 2019 led to the COVID-19 pandemic all over the world. When the virus was first isolated and its genome was sequenced in the early months of 2020, the efforts to develop a vaccine began. Based on prior well-known knowledge about coronavirus, the SARS-CoV-2 spike (S) protein was selected as the main target. Currently, more than one hundred vaccines are being investigated and several of them are already authorized by medical agencies. This review summarizes and compares the current knowledge about main approaches for vaccine development, focusing on those authorized and specifically their immunogenicity, efficacy preventing severe disease, adverse side effects, protection, and ability to cope with emergent SARS-CoV-2 variants.

7.
Cancers (Basel) ; 13(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359797

RESUMO

Colorectal cancer (CRC) is the second most deadly and third most commonly diagnosed cancer worldwide. There is significant heterogeneity among patients with CRC, which hinders the search for a standard approach for the detection of this disease. Therefore, the identification of robust prognostic markers for patients with CRC represents an urgent clinical need. In search of such biomarkers, a total of 114 patients with colorectal cancer and 67 healthy participants were studied. Soluble SIGLEC5 (sSIGLEC5) levels were higher in plasma from patients with CRC compared with healthy volunteers. Additionally, sSIGLEC5 levels were higher in exitus than in survivors, and the receiver operating characteristic curve analysis revealed sSIGLEC5 to be an exitus predictor (area under the curve 0.853; cut-off > 412.6 ng/mL) in these patients. A Kaplan-Meier analysis showed that patients with high levels of sSIGLEC5 had significantly shorter overall survival (hazard ratio 15.68; 95% CI 4.571-53.81; p ≤ 0.0001) than those with lower sSIGLEC5 levels. Our study suggests that sSIGLEC5 is a soluble prognosis marker and exitus predictor in CRC.

8.
J Immunol ; 207(1): 162-174, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34183364

RESUMO

According to a large number of reported cohorts, sepsis has been observed in nearly all deceased patients with COVID-19. We and others have described sepsis, among other pathologies, to be an endotoxin tolerance (ET)-related disease. In this study, we demonstrate that the culture of human blood cells from healthy volunteers in the presence of SARS-CoV-2 proteins induced ET hallmarks, including impairment of proinflammatory cytokine production, low MHC class II (HLA-DR) expression, poor T cell proliferation, and enhancing of both phagocytosis and tissue remodeling. Moreover, we report the presence of SARS-CoV-2 blood circulating proteins in patients with COVID-19 and how these levels correlate with an ET status, the viral RNA presence of SARS-CoV-2 in plasma, as well as with an increase in the proportion of patients with secondary infections.


Assuntos
COVID-19 , SARS-CoV-2 , Tolerância à Endotoxina , Genes MHC da Classe II , Humanos , RNA Viral
9.
Pathogens ; 9(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861369

RESUMO

Transmissible gastroenteritis virus (TGEV) is an enteric coronavirus causing high morbidity and mortality in porcine herds worldwide, that possesses both enteric and respiratory tropism. The ability to replicate in the enteric tract directly correlates with virulence, as TGEVs with an exclusive respiratory tropism are attenuated. The tissue tropism is determined by spike (S) protein, although the molecular bases for enteric tropism remain to be fully characterized. Both pAPN and sialic acid binding domains (aa 506-655 and 145-155, respectively) are necessary but not sufficient for enteric tract infection. Using a TGEV infectious cDNA and enteric (TGEV-SC11) or respiratory (TGEV-SPTV) isolates, encoding a full-length S protein, a set of chimeric recombinant viruses, with a sequential modification in S protein amino terminus, was engineered. In vivo tropism, either enteric, respiratory or both, was studied by inoculating three-day-old piglets and analyzing viral titers in lung and gut. The data indicated that U655>G change in S gene (S219A in S protein) was required to confer enteric tropism to a respiratory virus that already contains the pAPN and sialic acid binding domains in its S protein. Moreover, an engineered virus containing U655>G and a 6 nt insertion at position 1124 (Y374-T375insND in S protein) was genetically stable after passage in cell cultures, and increased virus titers in gut by 1000-fold. We postulated that the effect of these residues in enteric tropism may be mediated by the modification of both glycosaminoglycan binding and S protein structure.

10.
Viruses ; 11(8)2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349683

RESUMO

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus causing high morbidity and mortality in porcine herds worldwide. Although both inactivated and live attenuated vaccines have been extensively used, the emergence of highly virulent strains and the recurrent outbreaks even in vaccinated farms highlight the need of effective vaccines. Engineering of genetically defined live attenuated vaccines is a rational approach for novel vaccine development. In this line, we engineered an attenuated virus based on the transmissible gastroenteritis virus (TGEV) genome, expressing a chimeric spike protein from a virulent United States (US) PEDV strain. This virus (rTGEV-RS-SPEDV) was attenuated in highly-sensitive five-day-old piglets, as infected animals did not lose weight and none of them died. In addition, the virus caused very minor tissue damage compared with a virulent virus. The rTGEV-RS-SPEDV vaccine candidate was also attenuated in three-week-old animals that were used to evaluate the protection conferred by this virus, compared with the protection induced by infection with a virulent PEDV US strain (PEDV-NVSL). The rTGEV-RS-SPEDV virus protected against challenge with a virulent PEDV strain, reducing challenge virus titers in jejunum and leading to undetectable challenge virus RNA levels in feces. The rTGEV-RS-SPEDV virus induced a humoral immune response specific for PEDV, including neutralizing antibodies. Altogether, the data indicated that rTGEV-RS-SPEDV is a promising vaccine candidate against virulent PEDV infection.


Assuntos
Gastroenterite Suína Transmissível/prevenção & controle , Vírus da Diarreia Epidêmica Suína/genética , Doenças dos Suínos/prevenção & controle , Vírus da Gastroenterite Transmissível/genética , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Genoma Viral , Vírus da Diarreia Epidêmica Suína/patogenicidade , Recombinação Genética , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Estados Unidos , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/imunologia , Vacinas Virais/genética
11.
Virus Res ; 226: 142-151, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27397100

RESUMO

Porcine enteric coronaviruses (CoVs) cause severe disease in the porcine herds worldwide, leading to important economic losses. Despite the knowledge of these viruses since the 1970s, vaccination strategies have not been implemented, leading to continuous re-emergence of novel virulent strains. Live attenuated vaccines historically have been the most efficient. We consider that the new trend is the development of recombinant vaccines by using reverse genetics systems to engineer attenuated viruses, which could be used as effective and safe modified live vaccine candidates. To this end, host cell signaling pathways influencing porcine CoV virulence should be identified. Similarly, the identity of viral proteins involved in the modulation of host cell pathways influencing CoV pathogenesis should be analyzed. With this information, and using reverse genetics systems, it is possible to design viruses with modifications in the viral proteins acting as virulence factors, which may lead to attenuated viruses and, therefore, vaccine candidates. In addition, novel antiviral drugs may be developed once the host cell pathways and the molecular mechanism affecting porcine CoV replication and virulence are known. This review is focused in the host cell responses to enteric porcine CoV infection and the viral proteins involved in pathogenesis.


Assuntos
Infecções por Coronaviridae/veterinária , Coronavirus/imunologia , Coronavirus/patogenicidade , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Vacinas Virais/imunologia , Fatores de Virulência/imunologia , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Coronavirus/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Suínos , Doenças dos Suínos/metabolismo , Doenças dos Suínos/prevenção & controle , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/genética , Fatores de Virulência/genética
12.
J Virol ; 90(11): 5399-5414, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27009949

RESUMO

UNLABELLED: Coronavirus (CoV) nonstructural protein 14 (nsp14) is a 60-kDa protein encoded by the replicase gene that is part of the replication-transcription complex. It is a bifunctional enzyme bearing 3'-to-5' exoribonuclease (ExoN) and guanine-N7-methyltransferase (N7-MTase) activities. ExoN hydrolyzes single-stranded RNAs and double-stranded RNAs (dsRNAs) and is part of a proofreading system responsible for the high fidelity of CoV replication. nsp14 N7-MTase activity is required for viral mRNA cap synthesis and prevents the recognition of viral mRNAs as "non-self" by the host cell. In this work, a set of point mutants affecting different motifs within the ExoN domain of nsp14 was generated, using transmissible gastroenteritis virus as a model of Alphacoronavirus Mutants lacking ExoN activity were nonviable despite being competent in both viral RNA and protein synthesis. A specific mutation within zinc finger 1 (ZF-C) led to production of a viable virus with growth and viral RNA synthesis kinetics similar to that of the parental virus. Mutant recombinant transmissible gastroenteritis virus (TGEV) ZF-C (rTGEV-ZF-C) caused decreased cytopathic effect and apoptosis compared with the wild-type virus and reduced levels of dsRNA accumulation at late times postinfection. Consequently, the mutant triggered a reduced antiviral response, which was confirmed by evaluating different stages of the dsRNA-induced antiviral pathway. The expression of beta interferon (IFN-ß), tumor necrosis factor (TNF), and interferon-stimulated genes in cells infected with mutant rTGEV-ZF-C was reduced compared to the levels seen with the parental virus. Overall, our data revealed a potential role for CoV nsp14 in modulation of the innate immune response. IMPORTANCE: The innate immune response is the first line of antiviral defense that culminates in the synthesis of interferon and proinflammatory cytokines to control viral replication. CoVs have evolved several mechanisms to counteract the innate immune response at different levels, but the role of CoV-encoded ribonucleases in preventing activation of the dsRNA-induced antiviral response has not been described to date. The introduction of a mutation in zinc finger 1 of the ExoN domain of nsp14 led to production of a virus that induced a weak antiviral response, most likely due to the accumulation of lower levels of dsRNA in the late phases of infection. These observations allowed us to propose a novel role for CoV nsp14 ExoN activity in counteracting the antiviral response, which could serve as a novel target for the design of antiviral strategies.


Assuntos
Imunidade Inata , Imunomodulação , Mutagênese , Vírus da Gastroenterite Transmissível/genética , Vírus da Gastroenterite Transmissível/fisiologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Efeito Citopatogênico Viral , Exorribonucleases/genética , Exorribonucleases/metabolismo , Humanos , Interferon beta/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação Puntual , RNA Viral , Fator de Necrose Tumoral alfa/genética , Replicação Viral , Dedos de Zinco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA