RESUMO
Chronic activation of the adaptive immune system is a hallmark of atherosclerosis. As PI3Kδ is a key regulator of T and B-cell differentiation and function, we hypothesized that alleviation of adaptive immunity by PI3Kδ inactivation may represent an attractive strategy counteracting atherogenesis. As expected, lack of hematopoietic PI3Kδ in atherosclerosis-prone Ldlr-/- mice resulted in hindered T- and B-cell numbers, CD4+ effector T cells, Th1 response, and immunoglobulin levels. However, despite markedly impaired peripheral proinflammatory Th1 cells and atheromatous CD4+ T cells, the unexpected net effect of hematopoietic PI3Kδ deficiency was aggravated vascular inflammation and atherosclerosis. Further analyses revealed that PI3Kδ deficiency impaired numbers, immunosuppressive functions, and stability of regulatory CD4+ T cells (Tregs), whereas macrophage biology remained largely unaffected. Adoptive transfer of wild-type Tregs fully restrained the atherosclerotic plaque burden in Ldlr-/- mice lacking hematopoietic PI3Kδ, whereas PI3Kδ deficient Tregs failed to mitigate disease. Numbers of atheroprotective B-1 and proatherogenic B-2 cells as well serum immunoglobulin levels remained unaffected by adoptively transferred wild-type Tregs. In conclusion, we demonstrate that hematopoietic PI3Kδ ablation promotes atherosclerosis. Mechanistically, we identified PI3Kδ signaling as a powerful driver of atheroprotective Treg responses, which outweigh PI3Kδ driven proatherogenic effects of adaptive immune cells like Th1 cells.
RESUMO
Z-DNA-binding protein 1 (ZBP1) is an interferon-inducible sensor of Z-DNA and Z-RNA, which has emerged as a critical regulator of cell death and inflammation. ZBP1 binds Z-DNA and Z-RNA via its Zα domains, and signals by engaging RIPK3 and RIPK1 via its RIP homotypic interaction motifs (RHIMs). Here, we show that mice express an alternatively-spliced shorter ZBP1 isoform (ZBP1-S), which harbours the Zα domains but lacks the RHIMs, and acts as an endogenous inhibitor of the full-length protein (ZBP1-L). Mice and cells expressing only ZBP1-S are resistant to ZBP1-mediated cell death and inflammation. In contrast, cells lacking ZBP1-S show increased ZBP1-L-induced death compared to cells expressing both isoforms. Moreover, loss of the short isoform accelerates and exacerbates skin inflammation induced by ZBP1-mediated necroptosis of RIPK1-deficient keratinocytes, revealing an important physiological role of ZBP1-S. Mechanistically, ZBP1-S suppresses ZBP1-L-mediated cell death by binding to Z-nucleic acids via its Zα domains. Therefore, ZBP1-S acts as an endogenous inhibitor that competes with full-length ZBP1-L for binding Z-nucleic acid ligands to fine-tune ZBP1-mediated cell death and inflammation.
RESUMO
OBJECTIVE: Receptor-interacting protein kinase 1 (RIPK1) orchestrates the decision between cell survival and cell death in response to tumor necrosis factor (TNF) and other cytokines. Whereas the scaffolding function of RIPK1 is crucial to prevent TNF-induced apoptosis and necroptosis, its kinase activity is required for necroptosis and partially for apoptosis. Although TNF is a proinflammatory cytokine associated with ß-cell loss in diabetes, the mechanism by which TNF induces ß-cell demise remains unclear. METHODS: Here, we dissected the contribution of RIPK1 scaffold versus kinase functions to ß-cell death regulation using mice lacking RIPK1 specifically in ß-cells (Ripk1ß-KO mice) or expressing a kinase-dead version of RIPK1 (Ripk1D138N mice), respectively. These mice were challenged with streptozotocin, a model of autoimmune diabetes. Moreover, Ripk1ß-KO mice were further challenged with a high-fat diet to induce hyperglycemia. For mechanistic studies, pancreatic islets were subjected to various killing and sensitising agents. RESULTS: Inhibition of RIPK1 kinase activity (Ripk1D138N mice) did not affect the onset and progression of hyperglycemia in a type 1 diabetes model. Moreover, the absence of RIPK1 expression in ß-cells did not affect normoglycemia under basal conditions or hyperglycemia under diabetic challenges. Ex vivo, primary pancreatic islets are not sensitised to TNF-induced apoptosis and necroptosis in the absence of RIPK1. Intriguingly, we found that pancreatic islets display high levels of the antiapoptotic cellular FLICE-inhibitory protein (cFLIP) and low levels of apoptosis (Caspase-8) and necroptosis (RIPK3) components. Cycloheximide treatment, which led to a reduction in cFLIP levels, rendered primary islets sensitive to TNF-induced cell death which was fully blocked by caspase inhibition. CONCLUSIONS: Unlike in many other cell types (e.g., epithelial, and immune), RIPK1 is not required for cell death regulation in ß-cells under physiological conditions or diabetic challenges. Moreover, in vivo and in vitro evidence suggest that pancreatic ß-cells do not undergo necroptosis but mainly caspase-dependent death in response to TNF. Last, our results show that ß-cells have a distinct mode of regulation of TNF-cytotoxicity that is independent of RIPK1 and that may be highly dependent on cFLIP.
Assuntos
Apoptose , Hiperglicemia , Células Secretoras de Insulina , Camundongos Knockout , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Células Secretoras de Insulina/metabolismo , Camundongos , Hiperglicemia/metabolismo , Necroptose , Camundongos Endogâmicos C57BL , Diabetes Mellitus Experimental/metabolismo , Masculino , Morte Celular , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Z-DNA binding protein 1 (ZBP1) has important functions in anti-viral immunity and in the regulation of inflammatory responses. ZBP1 induces necroptosis by directly engaging and activating RIPK3, however, the mechanisms by which ZBP1 induces inflammation and in particular the role of RIPK1 and the contribution of cell death-independent signaling remain elusive. Here we show that ZBP1 causes skin inflammation by inducing RIPK3-mediated necroptosis and RIPK1-caspase-8-mediated apoptosis in keratinocytes. ZBP1 induced TNFR1-independent skin inflammation in mice with epidermis-specific ablation of FADD by triggering keratinocyte necroptosis. Moreover, transgenic expression of C-terminally truncated constitutively active ZBP1 (ZBP1ca) in mouse epidermis caused skin inflammation that was only partially inhibited by abrogation of RIPK3-MLKL-dependent necroptosis and fully prevented by combined deficiency in MLKL and caspase-8. Importantly, ZBP1ca induced caspase-8-mediated skin inflammation by RHIM-dependent but kinase activity-independent RIPK1 signaling. Furthermore, ZBP1ca-induced inflammatory cytokine production in the skin was completely prevented by combined inhibition of apoptosis and necroptosis arguing against a cell death-independent pro-inflammatory function of ZBP1. Collectively, these results showed that ZBP1 induces inflammation by activating necroptosis and RIPK1 kinase activity-independent apoptosis.
Assuntos
Apoptose , Caspase 8 , Inflamação , Queratinócitos , Necroptose , Proteínas de Ligação a RNA , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Camundongos , Caspase 8/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Queratinócitos/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Transdução de Sinais , Humanos , Proteínas Quinases/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
RIPK1 is a multi-functional kinase that regulates cell death and inflammation and has been implicated in the pathogenesis of inflammatory diseases. RIPK1 acts in a kinase-dependent and kinase-independent manner to promote or suppress apoptosis and necroptosis, but the underlying mechanisms remain poorly understood. Here, we show that a mutation (R588E) disrupting the RIPK1 death domain (DD) caused perinatal lethality induced by ZBP1-mediated necroptosis. Additionally, these mice developed postnatal inflammatory pathology, which was mediated by necroptosis-independent TNFR1, TRADD, and TRIF signaling, partially requiring RIPK3. Our biochemical mechanistic studies revealed that ZBP1- and TRIF-mediated activation of RIPK3 required RIPK1 kinase activity in wild-type cells but not in Ripk1R588E/R588E cells, suggesting that DD-dependent oligomerization of RIPK1 and its interaction with FADD determine the mechanisms of RIPK3 activation by ZBP1 and TRIF. Collectively, these findings revealed a critical physiological role of DD-dependent RIPK1 signaling that is important for the regulation of tissue homeostasis and inflammation.
Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Inflamação , Necroptose , Proteínas de Ligação a RNA , Proteína Serina-Treonina Quinases de Interação com Receptores , Transdução de Sinais , Animais , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Camundongos , Inflamação/metabolismo , Inflamação/imunologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Proteína de Domínio de Morte Associada a Fas/genética , Morte Celular , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Domínios Proteicos , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Apoptose , Mutação , Proteína de Domínio de Morte Associada a Receptor de TNFRESUMO
TBK1 and IKKε regulate multiple cellular processes including anti-viral type-I interferon responses, metabolism and TNF receptor signaling. However, the relative contributions and potentially redundant functions of IKKε and TBK1 in cell death, inflammation and tissue homeostasis remain poorly understood. Here we show that IKKε compensates for the loss of TBK1 kinase activity to prevent RIPK1-dependent and -independent inflammation in mice. Combined inhibition of IKKε and TBK1 kinase activities caused embryonic lethality that was rescued by heterozygous expression of kinase-inactive RIPK1. Adult mice expressing kinase-inactive versions of IKKε and TBK1 developed systemic inflammation that was induced by both RIPK1-dependent and -independent mechanisms. Combined inhibition of IKKε and TBK1 kinase activities in myeloid cells induced RIPK1-dependent cell death and systemic inflammation mediated by IL-1 family cytokines. Tissue-specific studies showed that IKKε and TBK1 were required to prevent cell death and inflammation in the intestine but were dispensable for liver and skin homeostasis. Together, these findings revealed that IKKε and TBK1 exhibit tissue-specific functions that are important to prevent cell death and inflammation and maintain tissue homeostasis.
Assuntos
Quinase I-kappa B , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Quinase I-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fosforilação , Citocinas/metabolismo , InflamaçãoRESUMO
Cells of the monocyte/macrophage lineage are an integral component of the body's innate ability to restore tissue function after injury. In parallel to mounting an inflammatory response, clearance of monocytes/macrophages from the wound site is critical to re-establish tissue functionality and integrity during the course of healing. The role of regulated cell death in macrophage clearance from damaged tissue and its implications for the outcome of the healing response is little understood. In this study, we explored the role of macrophage-specific FADD-mediated cell death on Ripk3-/- background in a mechanical skin injury model in mice. We found that combined inhibition of RIPK3-mediated necroptosis and FADD-caspase-8-mediated apoptosis in macrophages profoundly delayed wound healing. Importantly, RIPK3 deficiency alone did not considerably alter the wound healing process and macrophage population dynamics, arguing that inhibition of FADD-caspase-8-dependent death of macrophages is primarily responsible for delayed wound closure. Notably, TNF blockade reversed the accumulation of Ly6Chigh macrophages induced by combined deficiency of FADD and RIPK3, indicating a critical dual role of TNF-mediated prosurvival and cell death signaling, particularly in this highly proinflammatory macrophage subset. Our findings reveal a previously uncharacterized cross-talk of inflammatory and cell death signaling in macrophages in regulating repair processes in the skin.
Assuntos
Apoptose , Macrófagos , Animais , Camundongos , Caspase 8/metabolismo , Macrófagos/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Pele/metabolismoRESUMO
Digested dietary fats are taken up by enterocytes where they are assembled into pre-chylomicrons in the endoplasmic reticulum followed by transport to the Golgi for maturation and subsequent secretion to the circulation1. The role of mitochondria in dietary lipid processing is unclear. Here we show that mitochondrial dysfunction in enterocytes inhibits chylomicron production and the transport of dietary lipids to peripheral organs. Mice with specific ablation of the mitochondrial aspartyl-tRNA synthetase DARS2 (ref. 2), the respiratory chain subunit SDHA3 or the assembly factor COX10 (ref. 4) in intestinal epithelial cells showed accumulation of large lipid droplets (LDs) in enterocytes of the proximal small intestine and failed to thrive. Feeding a fat-free diet suppressed the build-up of LDs in DARS2-deficient enterocytes, which shows that the accumulating lipids derive mostly from digested fat. Furthermore, metabolic tracing studies revealed an impaired transport of dietary lipids to peripheral organs in mice lacking DARS2 in intestinal epithelial cells. DARS2 deficiency caused a distinct lack of mature chylomicrons concomitant with a progressive dispersal of the Golgi apparatus in proximal enterocytes. This finding suggests that mitochondrial dysfunction results in impaired trafficking of chylomicrons from the endoplasmic reticulum to the Golgi, which in turn leads to storage of dietary lipids in large cytoplasmic LDs. Taken together, these results reveal a role for mitochondria in dietary lipid transport in enterocytes, which might be relevant for understanding the intestinal defects observed in patients with mitochondrial disorders5.
Assuntos
Gorduras na Dieta , Enterócitos , Metabolismo dos Lipídeos , Mitocôndrias , Animais , Camundongos , Aspartato-tRNA Ligase/metabolismo , Quilomícrons/metabolismo , Gorduras na Dieta/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Retículo Endoplasmático/metabolismo , Enterócitos/metabolismo , Enterócitos/patologia , Células Epiteliais/metabolismo , Complexo de Golgi/metabolismo , Intestinos , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologiaRESUMO
Cellular inhibitor of apoptosis proteins (cIAPs) are RING-containing E3 ubiquitin ligases that ubiquitylate receptor-interacting protein kinase 1 (RIPK1) to regulate TNF signalling. Here, we established mice simultaneously expressing enzymatically inactive cIAP1/2 variants, bearing mutations in the RING domains of cIAP1/2 (cIAP1/2 mutant RING, cIAP1/2MutR ). cIap1/2MutR/MutR mice died during embryonic development due to RIPK1-mediated apoptosis. While expression of kinase-inactive RIPK1D138N rescued embryonic development, Ripk1D138N/D138N /cIap1/2MutR/MutR mice developed systemic inflammation and died postweaning. Cells expressing cIAP1/2MutR and RIPK1D138N were still susceptible to TNF-induced apoptosis and necroptosis, implying additional kinase-independent RIPK1 activities in regulating TNF signalling. Although further ablation of Ripk3 did not lead to any phenotypic improvement, Tnfr1 gene knock-out prevented early onset of systemic inflammation and premature mortality, indicating that cIAPs control TNFR1-mediated toxicity independent of RIPK1 and RIPK3. Beyond providing novel molecular insights into TNF-signalling, the mouse model established in this study can serve as a useful tool to further evaluate ongoing therapeutic protocols using inhibitors of TNF, cIAPs and RIPK1.
Assuntos
Proteínas Inibidoras de Apoptose , Receptores Tipo I de Fatores de Necrose Tumoral , Animais , Camundongos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Morte Celular , Apoptose , Inflamação/genética , Inflamação/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
Small cell lung cancer (SCLC) is an aggressive type of lung cancer driven by combined loss of the tumor suppressors RB1 and TP53. SCLC is highly metastatic and despite good initial response to chemotherapy patients usually relapse, resulting in poor survival. Therefore, better understanding of the mechanisms driving SCLC pathogenesis is required to identify new therapeutic targets. Here we identified a critical role of the IKK/NF-κB signaling pathway in SCLC development. Using a relevant mouse model of SCLC, we found that ablation of NEMO/IKKγ, the regulatory subunit of the IKK complex that is essential for activation of canonical NF-κB signaling, strongly delayed the onset and growth of SCLC resulting in considerably prolonged survival. In addition, ablation of the main NF-κB family member p65/RelA also delayed the onset and growth of SCLC and prolonged survival, albeit to a lesser extent than NEMO. Interestingly, constitutive activation of IKK/NF-κB signaling within the tumor cells did not exacerbate the pathogenesis of SCLC, suggesting that endogenous NF-κB levels are sufficient to fully support tumor development. Moreover, TNFR1 deficiency did not affect the development of SCLC, showing that TNF signaling does not play an important role in this tumor type. Taken together, our results revealed that IKK/NF-κB signaling plays an important role in promoting SCLC, identifying the IKK/NF-κB pathway as a promising therapeutic target.
Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , Camundongos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/genética , NF-kappa B/metabolismo , Transdução de Sinais , Carcinoma de Pequenas Células do Pulmão/genéticaRESUMO
Receptor-interacting protein kinase 1 (RIPK1) regulates cell death and inflammation. Here, we show that T cell-specific RIPK1 deficiency in mice leads to the premature senescence of T cells and induces various age-related diseases, resulting in premature death. RIPK1 deficiency causes higher basal activation of mTORC1 (mechanistic target of rapamycin complex 1) that drives enhanced cytokine production, induction of senescence-related genes, and increased activation of caspase-3/7, which are restored by inhibition of mTORC1. Critically, normal aged T cells exhibit similar phenotypes and responses. Mechanistically, a combined deficiency of RIPK3 and caspase-8 inhibition restores the impaired proliferative responses; the elevated activation of Akt, mTORC1, extracellular signal-regulated kinase, and caspase-3/7; and the increased expression of senescence-related genes in RIPK1-deficient CD4 T cells. Last, we revealed that the senescent phenotype of RIPK1-deficient and aged CD4 T cells is restored in the normal tissue environment. Thus, we have clarified the function of RIPK3 and caspase-8 in inducing CD4 T cell senescence, which is modulated by environmental signals.
Assuntos
Apoptose , Exaustão das Células T , Camundongos , Animais , Apoptose/fisiologia , Caspase 8/genética , Caspase 3/metabolismo , Morte Celular , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismoRESUMO
OBJECTIVE: Nonalcoholic fatty liver disease (NAFLD) ranges from steatosis to nonalcoholic steatohepatitis (NASH), which often progresses to hepatocellular carcinoma (HCC) through a largely undefined mechanism. NASH and HCC depend on inflammatory signaling, whose master regulator is the NFκB transcription factor family, activated by canonical and non-canonical pathways. METHODS: Here, we investigated non-canonical NFκB-inducing kinase (NIK/MAP3K14) in metabolic NASH, NASH to HCC transition, and DEN-induced HCC. To this end, we performed dietary and chemical interventions in mice that were analyzed via single nucleus sequencing, gene expression and histochemical methods. Ultimately, we verified our mouse results in human patient samples. RESULTS: We revealed that hepatocyte-specific NIK deficiency (NIKLKO) ameliorated metabolic NASH complications and reduced hepatocarcinogenesis, independent of its role in the NFκB pathway. Instead, hepatic NIK attenuated hepatoprotective JAK2/STAT5 signaling that is a prerequisite for NASH and NASH to HCC progression in mice and humans. CONCLUSIONS: Our data suggest NIK-mediated inhibitory JAK2 phosphorylation at serine 633 that might be amenable for future therapeutic interventions in patients.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/metabolismo , Hepatócitos/metabolismo , Janus Quinase 2/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fator de Transcrição STAT5/metabolismo , Quinase Induzida por NF-kappaBRESUMO
Inducible nitric oxide synthase (iNOS) is essential to the production of nitric oxide (NO), an efficient effector molecule against intracellular human pathogens such as Leishmania protozoan parasites. Some strains of Leishmania are known to bear a viral endosymbiont termed Leishmania RNA virus 1 (LRV1). Recognition of LRV1 by the innate immune sensor Toll-like receptor-3 (TLR3) leads to conditions worsening the disease severity in mice. This process is governed by type I interferon (type I IFNs) arising downstream of TLR3 stimulation and favoring the formation of secondary metastatic lesions. The formation of these lesions is mediated by the inflammatory cytokine IL-17A and occurs in the absence, or low level of, protective cytokine IFN-γ. Here, we described that the presence of LRV1 led to the initial expression of iNOS and low production of NO that failed to control infection. We subsequently showed that LRV1-triggered type I IFN was essential but insufficient to induce robust iNOS induction, which requires strong activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Leishmania guyanensis carrying LRV1 (LgyLRV1+) parasites mitigated strong iNOS production by limiting NF-kB activation via the induction of tumor necrosis factor-alpha-induced protein 3 (TNFAIP3), also known as A20. Moreover, our data suggested that production of LRV1-induced iNOS could be correlated with parasite dissemination and metastasis via elevated secretion of IL-17A in the draining lymph nodes. Our findings support an additional strategy by which LRV1-bearing Leishmania guyanensis evaded killing by nitric oxide and suggest that low levels of LRV1-induced NO might contribute to parasite metastasis.
Assuntos
Leishmania guyanensis , Leishmania , Óxido Nítrico Sintase Tipo II , Animais , Citocinas , Humanos , Interleucina-17 , Leishmania guyanensis/virologia , Leishmaniavirus , Camundongos , NF-kappa B , Óxido Nítrico , Óxido Nítrico Sintase Tipo II/metabolismo , Receptor 3 Toll-LikeRESUMO
The development of atherosclerotic plaques is the result of a chronic inflammatory response coordinated by stromal and immune cellular components of the vascular wall. While endothelial cells and leukocytes are well-recognised mediators of inflammation in atherosclerosis, the role of smooth muscle cells (SMCs) remains incompletely understood. Here we aimed to address the role of canonical NF-κB signalling in SMCs in the development of atherosclerosis. We investigated the role of NF-κB signalling in SMCs in atherosclerosis by employing SMC-specific ablation of NEMO, an IKK complex subunit that is essential for canonical NF-κB activation, in ApoE-/- mice. We show that SMC-specific ablation of NEMO (NEMOSMCiKO) inhibited high fat diet induced atherosclerosis in ApoE-/- mice. NEMOSMCiKO/ApoE-/- mice developed less and smaller atherosclerotic plaques, which contained fewer macrophages, decreased numbers of apoptotic cells and smaller necrotic areas and showed reduced inflammation compared to the plaques of ApoE-/- mice. In addition, the plaques of NEMOSMCiKO/ApoE-/- mice showed higher expression of α-SMA and lower expression of the transcriptional factor KLF4 compared to those of ApoE-/- mice. Consistently, in vitro, NEMO-deficient SMCs exhibited reduced proliferation and migration, as well as decreased KLF4 expression and lower production of IL-6 and MCP-1 upon inflammatory stimulus (TNF or LPS) compared to NEMO-expressing SMCs. In conclusion, NEMO-dependent activation of NF-κB signalling in SMCs critically contributes to the pathogenesis of atherosclerosis by regulating SMC proliferation, migration and phenotype switching in response to inflammatory stimuli.
Assuntos
Apolipoproteínas E/metabolismo , Aterosclerose , Placa Aterosclerótica , Animais , Aterosclerose/patologia , Células Endoteliais/metabolismo , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , NF-kappa B/metabolismo , Placa Aterosclerótica/patologiaRESUMO
Mutations of the ADAR1 gene encoding an RNA deaminase cause severe diseases associated with chronic activation of type I interferon (IFN) responses, including Aicardi-Goutières syndrome and bilateral striatal necrosis1-3. The IFN-inducible p150 isoform of ADAR1 contains a Zα domain that recognizes RNA with an alternative left-handed double-helix structure, termed Z-RNA4,5. Hemizygous ADAR1 mutations in the Zα domain cause type I IFN-mediated pathologies in humans2,3 and mice6-8; however, it remains unclear how the interaction of ADAR1 with Z-RNA prevents IFN activation. Here we show that Z-DNA-binding protein 1 (ZBP1), the only other protein in mammals known to harbour Zα domains9, promotes type I IFN activation and fatal pathology in mice with impaired ADAR1 function. ZBP1 deficiency or mutation of its Zα domains reduced the expression of IFN-stimulated genes and largely prevented early postnatal lethality in mice with hemizygous expression of ADAR1 with mutated Zα domain (Adar1mZα/- mice). Adar1mZα/- mice showed upregulation and impaired editing of endogenous retroelement-derived complementary RNA reads, which represent a likely source of Z-RNAs activating ZBP1. Notably, ZBP1 promoted IFN activation and severe pathology in Adar1mZα/- mice in a manner independent of RIPK1, RIPK3, MLKL-mediated necroptosis and caspase-8-dependent apoptosis, suggesting a novel mechanism of action. Thus, ADAR1 prevents endogenous Z-RNA-dependent activation of pathogenic type I IFN responses by ZBP1, suggesting that ZBP1 could contribute to type I interferonopathies caused by ADAR1 mutations.
Assuntos
Adenosina Desaminase , Interferon Tipo I , Proteínas de Ligação a RNA , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Apoptose , Caspase 8/metabolismo , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/imunologia , Camundongos , Mutação , Necroptose , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismoRESUMO
SQSTM1/p62 is a multitasking protein that functions as an autophagy receptor, but also as a signaling hub regulating diverse cellular pathways. p62 accumulation in mice with autophagy-deficient hepatocytes mediates liver damage and hepatocarcinogenesis through Nrf2 overactivation, yet the role of the p62-Keap1-Nrf2 axis in cell death and hepatocarcinogenesis in the absence of underlying autophagy defects is less clear. Here, we addressed the role of p62 and Nrf2 activation in a chronic liver disease model, namely mice with liver parenchymal cell-specific knockout of NEMO (NEMOLPC-KO), in which we demonstrate that they show no inherent autophagy impairment. Unexpectedly, systemic p62 ablation aggravated the phenotype and caused early postnatal lethality in NEMOLPC-KO mice. Expression of a p62 mutant (p62ΔEx2-5), which retains the ability to form aggregates and activate Nrf2 signaling, did not cause early lethality, but exacerbated hepatocarcinogenesis in these mice. Our immunohistological and molecular analyses showed that the increased tumor burden was only consistent with increased expression/stability of p62ΔEx2-5 driving Nrf2 hyperactivation, but not with other protumorigenic functions of p62, such as mTOR activation, cMYC upregulation or increased fibrosis. Surprisingly, forced activation of Nrf2 per se did not increase liver injury or tumor burden in NEMOLPC-KO mice, suggesting that autophagy impairment is a necessary prerequisite to unleash the Nrf2 oncogenic potential in mice with autophagy-competent hepatocytes.
RESUMO
Protection from infection with respiratory viruses such as influenza A virus (IAV) requires T cellmediated immune responses initiated by conventional dendritic cells (cDCs) that reside in the respiratory tract. Here, we show that effective induction of T cell responses against IAV in mice requires reinforcement of the resident lung cDC network by cDC progenitors. We found that CCR2-binding chemokines produced during IAV infection recruit pre-cDCs from blood and direct them to foci of infection, increasing the number of progeny cDCs next to sites of viral replication. Ablation of CCR2 in the cDC lineage prevented this increase and resulted in a deficit in IAV-specific T cell responses and diminished resistance to reinfection. These data suggest that the homeostatic network of cDCs in tissues is insufficient for immunity and reveal a chemokine-driven mechanism of expansion of lung cDC numbers that amplifies T cell responses against respiratory viruses.
Assuntos
Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Células Dendríticas/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
Necrotic cell death represents a major pathogenic mechanism of Mycobacterium tuberculosis (Mtb) infection. It is increasingly evident that Mtb induces several types of regulated necrosis but how these are interconnected and linked to the release of pro-inflammatory cytokines remains unknown. Exploiting a clinical cohort of tuberculosis patients, we show here that the number and size of necrotic lesions correlates with IL-1ß plasma levels as a strong indicator of inflammasome activation. Our mechanistic studies reveal that Mtb triggers mitochondrial permeability transition (mPT) and subsequently extensive macrophage necrosis, which requires activation of the NLRP3 inflammasome. NLRP3-driven mitochondrial damage is dependent on proteolytic activation of the pore-forming effector protein gasdermin D (GSDMD), which links two distinct cell death machineries. Intriguingly, GSDMD, but not the membranolytic mycobacterial ESX-1 secretion system, is dispensable for IL-1ß secretion from Mtb-infected macrophages. Thus, our study dissects a novel mechanism of pathogen-induced regulated necrosis by identifying mitochondria as central regulatory hubs capable of delineating cytokine secretion and lytic cell death.
RESUMO
Linear ubiquitination regulates inflammatory and cell death signalling. Deficiency of the linear ubiquitin chain-specific deubiquitinase, OTULIN, causes OTULIN-related autoinflammatory syndrome (ORAS), a systemic inflammatory pathology affecting multiple organs including the skin. Here we show that mice with epidermis-specific OTULIN deficiency (OTULINE-KO) develop inflammatory skin lesions that are driven by TNFR1 signalling in keratinocytes and require RIPK1 kinase activity. OTULINE-KO mice lacking RIPK3 or MLKL have only very mild skin inflammation, implicating necroptosis as an important etiological mediator. Moreover, combined loss of RIPK3 and FADD fully prevents skin lesion development, showing that apoptosis also contributes to skin inflammation in a redundant function with necroptosis. Finally, MyD88 deficiency suppresses skin lesion development in OTULINE-KO mice, suggesting that toll-like receptor and/or IL-1 signalling are involved in mediating skin inflammation. Thus, OTULIN maintains homeostasis and prevents inflammation in the skin by inhibiting TNFR1-mediated, RIPK1 kinase activity-dependent keratinocyte death and primarily necroptosis.