Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods ; 195: 77-91, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33744397

RESUMO

The current COVID-19 pandemic contains an unprecedented amount of uncertainty and variability and thus, there is a critical need for understanding of the variation documented in the biological, policy, sociological, and infrastructure responses during an epidemic to support decisions at all levels. With the significant asymptomatic spread of the virus and without an immediate vaccine and pharmaceuticals available, the best feasible strategies for testing and diagnostics, contact tracing, and quarantine need to be optimized. With potentially high false negative test results, infected people would not be enrolled in contact-trace programs and thus, may not be quarantined. Similarly, without broad testing, asymptomatic people are not identified and quarantined. Interconnected system dynamics models can be used to optimize strategies for mitigations for decision support during a pandemic. We use a systems dynamics epidemiology model along with other interconnected system models within public health including hospitals, intensive care units, masks, contact tracing, social distancing, and a newly developed testing and diagnostics model to investigate the uncertainties with testing and to optimize strategies for detecting and diagnosing infected people. Using an orthogonal array Latin Hypercube experimental design, we ran 54 simulations each for two scenarios of 10% and 30% asymptomatic people, varying important inputs for testing and social distancing. Systems dynamics modeling, coupled with computer experimental design and statistical analysis can provide rapid and quantitative results for decision support. Our results show that widespread testing, contacting tracing and quarantine can curtail the pandemic through identifying asymptomatic people in the population.


Assuntos
COVID-19/diagnóstico , COVID-19/epidemiologia , Busca de Comunicante/métodos , Modelos Biológicos , Análise de Sistemas , Incerteza , COVID-19/prevenção & controle , Humanos , Distanciamento Físico , Quarentena/métodos
2.
J Air Waste Manag Assoc ; 66(5): 528-45, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27064908

RESUMO

UNLABELLED: In this study, emissions of ozone precursors from oil and gas operations in Utah's Uinta Basin are predicted (with uncertainty estimates) from 2015-2019 using a Monte-Carlo model of (a) drilling and production activity, and (b) emission factors. Cross-validation tests against actual drilling and production data from 2010-2014 show that the model can accurately predict both types of activities, returning median results that are within 5% of actual values for drilling, 0.1% for oil production, and 4% for gas production. A variety of one-time (drilling) and ongoing (oil and gas production) emission factors for greenhouse gases, methane, and volatile organic compounds (VOCs) are applied to the predicted oil and gas operations. Based on the range of emission factor values reported in the literature, emissions from well completions are the most significant source of emissions, followed by gas transmission and production. We estimate that the annual average VOC emissions rate for the oil and gas industry over the 2010-2015 time period was 44.2E+06 (mean) ± 12.8E+06 (standard deviation) kg VOCs per year (with all applicable emissions reductions). On the same basis, over the 2015-2019 period annual average VOC emissions from oil and gas operations are expected to drop 45% to 24.2E+06 ± 3.43E+06 kg VOCs per year, due to decreases in drilling activity and tighter emission standards. IMPLICATIONS: This study improves upon previous methods for estimating emissions of ozone precursors from oil and gas operations in Utah's Uinta Basin by tracking one-time and ongoing emission events on a well-by-well basis. The proposed method has proven highly accurate at predicting drilling and production activity and includes uncertainty estimates to describe the range of potential emissions inventory outcomes. If similar input data are available in other oil and gas producing regions, then the method developed here could be applied to those regions as well.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Campos de Petróleo e Gás , Ozônio/análise , Compostos Orgânicos Voláteis/análise , Modelos Teóricos , Método de Monte Carlo , Utah
3.
Environ Sci Technol ; 45(1): 215-22, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20698546

RESUMO

We explore carbon capture and sequestration (CCS) at the meso-scale, a level of study between regional carbon accounting and highly detailed reservoir models for individual sites. We develop an approach to CO(2) sequestration site screening for industries or energy development policies that involves identification of appropriate sequestration basin, analysis of geologic formations, definition of surface sites, design of infrastructure, and analysis of CO(2) transport and storage costs. Our case study involves carbon management for potential oil shale development in the Piceance-Uinta Basin, CO and UT. This study uses new capabilities of the CO(2)-PENS model for site screening, including reservoir capacity, injectivity, and cost calculations for simple reservoirs at multiple sites. We couple this with a model of optimized source-sink-network infrastructure (SimCCS) to design pipeline networks and minimize CCS cost for a given industry or region. The CLEAR(uff) dynamical assessment model calculates the CO(2) source term for various oil production levels. Nine sites in a 13,300 km(2) area have the capacity to store 6.5 GtCO(2), corresponding to shale-oil production of 1.3 Mbbl/day for 50 years (about 1/4 of U.S. crude oil production). Our results highlight the complex, nonlinear relationship between the spatial deployment of CCS infrastructure and the oil-shale production rate.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Monitoramento Ambiental/métodos , Colorado , Técnicas de Apoio para a Decisão , Recuperação e Remediação Ambiental , Fenômenos Geológicos , Modelos Químicos , Utah
4.
Phys Rev Lett ; 93(6): 065501, 2004 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-15323641

RESUMO

The transition from linear to nonlinear dynamical elasticity in rocks is of considerable interest in seismic wave propagation as well as in understanding the basic dynamical processes in consolidated granular materials. We have carried out a careful experimental investigation of this transition for Berea and Fontainebleau sandstones. Below a well-characterized strain, the materials behave linearly, transitioning beyond that point to a nonlinear behavior which can be accurately captured by a simple macroscopic dynamical model. At even higher strains, effects due to a driven nonequilibrium state, and relaxation from it, complicate the characterization of the nonlinear behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA