Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Commun Biol ; 7(1): 349, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514781

RESUMO

The past decade has seen an increase in the prevalence of sequence type (ST) 45 methicillin-resistant Staphylococcus aureus (MRSA), yet the underlying drivers for its emergence and spread remain unclear. To better understand the worldwide dissemination of ST45 S. aureus, we performed phylogenetic analyses of Australian isolates, supplemented with a global population of ST45 S. aureus genomes. Our analyses revealed a distinct lineage of multidrug-resistant ST45 MRSA harbouring qacA, predominantly found in Australia and Singapore. Bayesian inference predicted that the acquisition of qacA occurred in the late 1990s. qacA was integrated into a structurally variable region of the chromosome containing Tn552 (carrying blaZ) and Tn4001 (carrying aac(6')-aph(2")) transposable elements. Using mutagenesis and in vitro assays, we provide phenotypic evidence that qacA confers tolerance to chlorhexidine. These findings collectively suggest both antimicrobial resistance and the carriage of qacA may play a role in the successful establishment of ST45 MRSA.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus/genética , Teorema de Bayes , Filogenia , Infecções Estafilocócicas/epidemiologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Bactérias/genética , Austrália
2.
Sex Transm Infect ; 100(1): 48-51, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050184

RESUMO

OBJECTIVES: To ensure accurate diagnosis of infectious diseases, preanalytical factors should be considered when assessing specimen quality and subsequent test result. Accordingly, we aimed to systematically assess the effect of storage time, temperature and buffer on the analytical sensitivity of detecting the sexually transmitted pathogen, Neisseria gonorrhoeae across multiple molecular diagnostic platforms. METHODS: Cultured N. gonorrhoeae was spiked into generic and commercial storage buffers and stored at four temperatures and five time points, ranging from -20°C to 37°C, over 30 days. Samples were processed using the Alinity m STI, Xpert CT/NG and Aptima Combo 2 nucleic acid amplification assays and an in-house quantitative PCR assay. A reduction in analytical sensitivity was defined as a significant (p<0.05) increase in cycle threshold (Ct) value relative to control samples. RESULTS: In total, 2756 samples were processed, with N. gonorrhoeae detected in 99.2% of samples. With respect to time, analytical sensitivity was maintained from day 2 (113/120; 94.2%) up to day 30 (110/120; 91.7%) relative to baseline samples. With respect to temperature, analytical sensitivity was maintained from -20°C (147/150; 98.0%) up to 37°C (136/150; 90.7%) relative to baseline samples. Generic buffers, Viral Transport Medium and Amies Liquid Media showed a reduction in analytical sensitivity compared with their commercial counterparts, Aptima Multitest Swab Transport Media and Abbott Alinity transport buffer using select diagnostic assays; this reduction appeared temperature dependent, with the largest differences in median Ct values observed at 37°C (p<0.05). CONCLUSIONS: Increased prevalence of sample self-collection for sexually transmitted infections (STIs) warrants an evaluation of preanalytical sample storage variables on diagnostic testing performance. Here, across a range of time points, temperatures and storage buffers, N. gonorrhoeae was successfully detected, supporting flexibility in sample storage, and by extension the feasibility of analysing self-collected samples to improve access to STI testing.


Assuntos
Infecções por Chlamydia , Gonorreia , Ácidos Nucleicos , Infecções Sexualmente Transmissíveis , Humanos , Neisseria gonorrhoeae/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Chlamydia trachomatis/genética , Sensibilidade e Especificidade , Infecções por Chlamydia/diagnóstico , Gonorreia/diagnóstico
3.
Lancet Microbe ; 4(10): e800-e810, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37722405

RESUMO

BACKGROUND: The 2022 outbreak of mpox (formerly known as monkeypox) led to the spread of monkeypox virus (MPXV) in over 110 countries, demanding effective disease management and surveillance. As current diagnostics rely largely on centralised laboratory testing, our objective was to develop a simple rapid point-of-care assay to detect MPXV in clinical samples using isothermal amplification coupled with CRISPR and CRISPR-associated protein (Cas) technology. METHODS: In this proof-of-concept study, we developed a portable isothermal amplification CRISPR-Cas12a-based assay for the detection of MPXV. We designed a panel of 22 primer-guide RNA sets using pangenome and gene-agnostic approaches, and subsequently shortlisted the three sets producing the strongest signals for evaluation of analytical sensitivity and specificity using a fluorescence-based readout. The set displaying 100% specificity and the lowest limit of detection (LOD) was selected for further assay validation using both a fluorescence-based and lateral-flow readout. Assay specificity was confirmed using a panel of viral and bacterial pathogens. Finally, we did a blind concordance study on genomic DNA extracted from 185 clinical samples, comparing assay results with a gold-standard quantitative PCR (qPCR) assay. We identified the optimal time to detection and analysed the performance of the assay relative to qPCR using receiver operating characteristic (ROC) curves. We also assessed the compatibility with lateral-flow strips, both visually and computationally, where strips were interpreted blinded to the fluorescence results on the basis of the presence or absence of test bands. FINDINGS: With an optimal run duration of approximately 45 min from isothermal amplification to CRISPR-assay readout, the MPXV recombinase polymerase amplification CRISPR-Cas12a-based assay with the selected primer-guide set had an LOD of 1 copy per µL and 100% specificity against tested viral pathogens. Blinded concordance testing of 185 clinical samples resulted in 100% sensitivity (95% CI 89·3-100) and 99·3% specificity (95% CI 95·7-100) using the fluorescence readout. For optimal time to detection by fluorescence readout, we estimated the areas under the ROC curve to be 0·98 at 2 min and 0·99 at 4 min. Lateral-flow strips had 100% sensitivity (89·3-100) and 98·6% specificity (94·7-100) with both visual and computational assessment. Overall, lateral-flow results were highly concordant with fluorescence-based readouts (179 of 185 tests, 96·8% concordant), with discrepancies associated with low viral load samples. INTERPRETATION: Our assay for the diagnosis of mpox displayed good performance characteristics compared with qPCR. Although optimisation of the assay will be required before deployment, its usability and versatility present a potential solution to MPXV detection in low-resource and remote settings, as well as a means of community-based, on-site testing. FUNDING: Victorian Medical Research Accelerator Fund and the Australian Government Department of Health.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33593834

RESUMO

Topical antibiotic preparations, such as fusidic acid (FA) or mupirocin, are used in the prevention and treatment of superficial skin infections caused by staphylococci. Previous genomic epidemiology work has suggested an association between the widespread use of topical antibiotics and the emergence of methicillin resistant Staphylococcus aureus in some settings. In this study, we provide experimental proof of co-selection for multidrug resistance in S. aureus following exposure to FA or mupirocin. Through targeted mutagenesis and phenotypic analyses, we confirmed that fusC carriage confers resistance to FA, and mupA carriage confers high-level resistance to mupirocin in multiple S. aureus genetic backgrounds. In vitro experiments demonstrated that carriage of fusC and mupA confer a competitive advantage in the presence of sub-inhibitory concentrations of FA and mupirocin, respectively. Further, we used a porcine skin colonisation model to show that clinically relevant concentrations of topical antibiotics can co-select for presence of unrelated antimicrobial resistance determinants, such as mecA, blaZ, and qacA, in fusC or mupA harbouring S. aureus These findings provide valuable insights on the role of acquired FA or mupirocin resistance in co-selecting for broader antibiotic resistance in S. aureus, prompting greater need for judicious use of topical antibiotics.

5.
Lancet Microbe ; 3(6): e417-e426, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35659903

RESUMO

BACKGROUND: The incidence of syphilis has increased markedly in the past decade in high-income countries, including Australia. To date, however, genomic studies of Treponema pallidum have focused mainly on the northern hemisphere. Here, we aimed to characterise the lineages of T pallidum driving the current syphilis epidemic in Australia. METHODS: In this genomic epidemiological analysis, using phylogenomic and phylodynamic analyses, we analysed 456 high-quality T pallidum genomes collected from clinical samples in Australia between Oct 19, 2005, and Dec 31, 2020, and contextualised this information with publicly available sequence data. We also performed detailed genomic characterisation of putative antimicrobial resistance determinants, in addition to correlating single-locus typing of the TP0548 allele with the T pallidum phylogeny. FINDINGS: Phylogenomic analyses identified four major sublineages circulating in Australia and globally, two belonging to the SS14 lineage, and two belonging to the Nichols lineage. Australian sublineages were further delineated into twelve subgroups, with five of the six largest subgroups associated with men who have sex with men, and the sixth lineage was predominantly associated with heterosexual people. Most Australian T pallidum genomes (398 [87%] of 456) were genotypically macrolide resistant, and TP0548 typing correlated significantly with T pallidum genomic subgroups. INTERPRETATION: These findings show that the current syphilis epidemic in Australia is driven by multiple lineages of T pallidum, rather than one distinct outbreak. Major subgroups of T pallidum in Australia have emerged within the past 30 years, are closely related to global lineages, and circulate across different sexual networks. In conjunction with improved testing and treatment, these data could better inform the control of syphilis in Australia. FUNDING: National Health and Medical Research Council, Australian Research Council.


Assuntos
Minorias Sexuais e de Gênero , Sífilis , Antibacterianos , Austrália/epidemiologia , Surtos de Doenças , Genômica , Homossexualidade Masculina , Humanos , Masculino , Sífilis/epidemiologia , Treponema pallidum/genética
6.
Antimicrob Agents Chemother ; 66(6): e0004222, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35579459

RESUMO

Improved treatment and prevention strategies, such as antimicrobial mouthwashes, may be important for addressing the public health threat of antimicrobial-resistant Neisseria gonorrhoeae. Here, we describe the activity of seven common antibacterial mouthwashes and antiseptics against N. gonorrhoeae isolates, incorporating the use of a human saliva test matrix. Our data demonstrate that antibacterial mouthwashes and antiseptics vary in their ability to inhibit the in vitro growth of N. gonorrhoeae and saliva may impact this inhibitory activity.


Assuntos
Anti-Infecciosos Locais , Anti-Infecciosos , Gonorreia , Antibacterianos/farmacologia , Anti-Infecciosos Locais/farmacologia , Gonorreia/tratamento farmacológico , Gonorreia/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Antissépticos Bucais/farmacologia , Neisseria gonorrhoeae
7.
Microbiol Spectr ; 10(1): e0175721, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019769

RESUMO

Mouthwash is a commonly used product and has been proposed as an alternative intervention to prevent gonorrhea transmission. However, the long-term effects of mouthwash on the oral microbiota are largely unknown. We investigated the impact of 12 weeks of daily mouthwash use on the oropharyngeal microbiota in a subset of men who have sex with men who participated in a randomized trial comparing the efficacy of two alcohol-free mouthwashes for the prevention of gonorrhea. We characterized the oropharyngeal microbiota using 16S rRNA gene sequencing of tonsillar fossae samples collected before and after 12 weeks of daily use of Listerine mouthwash or Biotène dry mouth oral rinse. Permutational multivariate analysis of variance (PERMANOVA) was used to assess differences in oropharyngeal microbiota composition following mouthwash use. Differential abundance testing was performed using ALDEx2, with false-discovery rate correction. A total of 306 samples from 153 men were analyzed (Listerine, n = 78 and Biotène, n = 75). There was no difference in the overall structure of the oropharyngeal microbiota following Listerine or Biotène use (PERMANOVA P = 0.413 and P = 0.331, respectively). Although no bacterial taxa were significantly differentially abundant following Listerine use, we observed a small but significant decrease in the abundance of both Streptococcus and Leptotrichia following Biotène use. Overall, our findings suggest that daily use of antiseptic mouthwash has minimal long-term effects on the composition of the oropharyngeal microbiota. IMPORTANCE Given the role of the oral microbiota in human health, it is important to understand if and how external factors influence its composition. Mouthwash use is common in some populations, and the use of antiseptic mouthwash has been proposed as an alternative intervention to prevent gonorrhea transmission. However, the long-term effect of mouthwash use on the oral microbiota composition is largely unknown. We found that daily use of two different commercially available mouthwashes had limited long-term effects on the composition of the oropharyngeal microbiota over a 12-week period. The results from our study and prior studies highlight that different mouthwashes may differentially affect the oral microbiome composition and that further studies are needed to determine if mouthwash use induces short-term changes to the oral microbiota that may have detrimental effects.


Assuntos
Homossexualidade Masculina , Microbiota/efeitos dos fármacos , Antissépticos Bucais/farmacologia , Minorias Sexuais e de Gênero , Adulto , Método Duplo-Cego , Combinação de Medicamentos , Glucose Oxidase/farmacologia , Gonorreia , Humanos , Lactoperoxidase/farmacologia , Masculino , Microbiota/genética , Muramidase/farmacologia , Orofaringe/microbiologia , RNA Ribossômico 16S , Salicilatos , Terpenos , Adulto Jovem
8.
Biomolecules ; 11(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34944446

RESUMO

Legionella pneumophila is a Gram-negative intracellular pathogen that causes Legionnaires' disease in elderly or immunocompromised individuals. This bacterium relies on the Dot/Icm (Defective in organelle trafficking/Intracellular multiplication) Type IV Secretion System (T4SS) and a large (>330) set of effector proteins to colonize the host cell. The structural variability of these effectors allows them to disrupt many host processes. Herein, we report the crystal structure of MavL to 2.65 Å resolution. MavL adopts an ADP-ribosyltransferase (ART) fold and contains the distinctive ligand-binding cleft of ART proteins. Indeed, MavL binds ADP-ribose with Kd of 13 µM. Structural overlay of MavL with poly-(ADP-ribose) glycohydrolases (PARGs) revealed a pair of aspartate residues in MavL that align with the catalytic glutamates in PARGs. MavL also aligns with ADP-ribose "reader" proteins (proteins that recognize ADP-ribose). Since no glycohydrolase activity was observed when incubated in the presence of ADP-ribosylated PARP1, MavL may play a role as a signaling protein that binds ADP-ribose. An interaction between MavL and the mammalian ubiquitin-conjugating enzyme UBE2Q1 was revealed by yeast two-hybrid and co-immunoprecipitation experiments. This work provides structural and molecular insights to guide biochemical studies aimed at elucidating the function of MavL. Our findings support the notion that ubiquitination and ADP-ribosylation are global modifications exploited by L. pneumophila.


Assuntos
Legionella pneumophila/crescimento & desenvolvimento , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Adenosina Difosfato Ribose/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Células HEK293 , Células HeLa , Humanos , Legionella pneumophila/enzimologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Células THP-1 , Ubiquitinação
9.
Pathology ; 53(6): 689-699, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34425991

RESUMO

Emerging testing technologies for detection of SARS-CoV-2 include those that are rapid and can be used at point-of-care (POC), and those facilitating high throughput laboratory-based testing. Tests designed to be performed at POC (such as antigen tests and molecular assays) have the potential to expedite isolation of infectious patients and their contacts, but most are less sensitive than standard-of-care reverse transcription polymerase chain reaction (RT-PCR). Data on clinical performance of the majority of emerging assays are limited with most evaluations performed on contrived or stored laboratory samples. Further evaluations of these assays are required, particularly when performed at POC on symptomatic and asymptomatic patients and at various time-points after symptom onset. A few studies have so far shown several of these assays have high specificity. However, large prospective evaluations are needed to confirm specificity, particularly before the assays are implemented in low prevalence settings or asymptomatic populations. High throughput laboratory-based testing includes the use of new sample types (e.g., saliva to increase acceptability) or innovative uses of existing technology (e.g., sample pooling). Information detailing population-wide testing strategies for SARS-COV-2 is largely missing from peer-reviewed literature. Logistics and supply chains are key considerations in any plan to 'scale up' testing in the Australian context. The strategic use of novel assays will help strike the balance between achieving adequate test numbers without overwhelming laboratory capacity. To protect testing of high-risk populations, the aims of testing with respect to the phase of the pandemic must be considered.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Austrália , Humanos , SARS-CoV-2
10.
Diagn Microbiol Infect Dis ; 101(3): 115455, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34256252

RESUMO

Our aim was to determine if there was a difference in culture positivity for oropharyngeal gonorrhoea when sampling using a nylon-flocked versus cotton-tipped swab. We collected FLOQSwabs and cotton-tipped swabs from individuals aged ≥ 18 years who had untreated oropharyngeal gonorrhoea detected by NAAT between November 2019-June 2020.Of 78 participants, 32 (41.0%) were culture-positive for N. gonorrhoeae from either swab. Of these 32, 29 (90.6%, 95%CI: 75.0%-98.0%) were positive on both swabs, one (3.1%, 95%CI: 0.0%-16.2%) tested positive on FLOQSwab only and two (6.2%, 95%CI: 0.1%-20.8%) tested positive on cotton-tipped swabs only. There was moderate agreement between the swabs in the amount of bacterial growth (Cohen's Kappa (k)=0.745; 95%CI: 0.622-0.868, p<0.001). Our results showed that the proportion of positive results was comparable using the FLOQSwabs versus the cotton-tipped swabs for oropharyngeal gonorrhoea culture.


Assuntos
Neisseria gonorrhoeae/isolamento & purificação , Nylons , Orofaringe/microbiologia , Manejo de Espécimes/instrumentação , Manejo de Espécimes/métodos , Têxteis , Estudos Transversais , Feminino , Gonorreia/diagnóstico , Gonorreia/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Neisseria gonorrhoeae/crescimento & desenvolvimento , Projetos Piloto , Infecções Respiratórias/microbiologia , Manejo de Espécimes/normas , Adulto Jovem
11.
Lancet Reg Health West Pac ; 9: 100115, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33937887

RESUMO

BACKGROUND: In Australia, COVID-19 diagnosis relies on RT-PCR testing which is relatively costly and time-consuming. To date, few studies have assessed the performance and implementation of rapid antigen-based SARS-CoV-2 testing in a setting with a low prevalence of COVID-19 infections, such as Australia. METHODS: This study recruited participants presenting for COVID-19 testing at three Melbourne metropolitan hospitals during a period of low COVID-19 prevalence. The Abbott PanBioTM COVID-19 Ag point-of-care test was performed alongside RT-PCR. In addition, participants with COVID-19 notified to the Victorian Government were invited to provide additional swabs to aid validation. Implementation challenges were also documented. FINDINGS: The specificity of the Abbott PanBioTM COVID-19 Ag test was 99.96% (95% CI 99.73 - 100%). Sensitivity amongst participants with RT-PCR-confirmed infection was dependent upon the duration of symptoms reported, ranging from 77.3% (duration 1 to 33 days) to 100% in those within seven days of symptom onset. A range of implementation challenges were identified which may inform future COVID-19 testing strategies in a low prevalence setting. INTERPRETATION: Given the high specificity, antigen-based tests may be most useful in rapidly triaging public health and hospital resources while expediting confirmatory RT-PCR testing. Considering the limitations in test sensitivity and the potential for rapid transmission in susceptible populations, particularly in hospital settings, careful consideration is required for implementation of antigen testing in a low prevalence setting. FUNDING: This work was funded by the Victorian Department of Health and Human Services. The funder was not involved in data analysis or manuscript preparation.

12.
Angew Chem Int Ed Engl ; 60(31): 17102-17107, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34043272

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in an unprecedented need for diagnostic testing that is critical in controlling the spread of COVID-19. We propose a portable infrared spectrometer with purpose-built transflection accessory for rapid point-of-care detection of COVID-19 markers in saliva. Initially, purified virion particles were characterized with Raman spectroscopy, synchrotron infrared (IR) and AFM-IR. A data set comprising 171 transflection infrared spectra from 29 subjects testing positive for SARS-CoV-2 by RT-qPCR and 28 testing negative, was modeled using Monte Carlo Double Cross Validation with 50 randomized test and model sets. The testing sensitivity was 93 % (27/29) with a specificity of 82 % (23/28) that included positive samples on the limit of detection for RT-qPCR. Herein, we demonstrate a proof-of-concept high throughput infrared COVID-19 test that is rapid, inexpensive, portable and utilizes sample self-collection thus minimizing the risk to healthcare workers and ideally suited to mass screening.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Saliva/química , Animais , Chlorocebus aethiops , Estudos de Coortes , Análise Discriminante , Humanos , Análise dos Mínimos Quadrados , Método de Monte Carlo , Testes Imediatos , Estudo de Prova de Conceito , SARS-CoV-2 , Sensibilidade e Especificidade , Manejo de Espécimes , Espectrofotometria Infravermelho , Células Vero
13.
J Clin Microbiol ; 59(5)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33658263

RESUMO

Resistance-guided therapy (RGT) for gonorrhea may reduce unnecessary use of broad-spectrum antibiotics. When reflexed from the Aptima Combo 2 assay, the ResistancePlus GC assay demonstrated 94.8% sensitivity and 100.0% specificity for Neisseria gonorrhoeae detection. Of the 379 concordant N. gonorrhoeae-positive samples, 86.8% were found to possess the gyrA S91F mutation, which was highly predictive for ciprofloxacin resistance and stable across 3,144 publicly available N. gonorrhoeae genomes. Our work supports the feasibility of implementing RGT for gonorrhea into routine molecular workflows.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana , Gonorreia/diagnóstico , Gonorreia/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae/genética , Reflexo
14.
Artigo em Inglês | MEDLINE | ID: mdl-32974218

RESUMO

Legionella pneumophila is an environmental bacterium that has evolved to survive predation by soil and water amoebae such as Acanthamoeba castellanii, and this has inadvertently led to the ability of L. pneumophila to survive and replicate in human cells. L. pneumophila causes Legionnaire's Disease, with human exposure occurring via the inhalation of water aerosols containing both amoebae and the bacteria. These aerosols originate from aquatic biofilms found in artifical water sources, such as air-conditioning cooling towers and humidifiers. In these man-made environments, A. castellanii supports L. pneumophila intracellular replication, thereby promoting persistence and dissemination of the bacteria and providing protection from external stress. Despite this close evolutionary relationship, very little is known about how A. castellanii responds to L. pneumophila infection. In this study, we examined the global transcriptional response of A. castellanii to L. pneumophila infection. We compared A. castellanii infected with wild type L. pneumophila to A. castellanii infected with an isogenic ΔdotA mutant strain, which is unable to replicate intracellularly. We showed that A. castellanii underwent clear morphological and transcriptional rewiring over the course of L. pneumophila infection. Through improved annotation of the A. castellanii genome, we determined that these transcriptional changes primarily involved biological processes utilizing small GTPases, including cellular transport, signaling, metabolism and replication. In addition, a number of sirtuin-encoding genes in A. castellanii were found to be conserved and upregulated during L. pneumophila infection. Silencing of sirtuin gene, sir6f (ACA1_153540) resulted in the inhibition of A. castellanii cell proliferation during infection and reduced L. pneumophila replication. Overall our findings identified several biological pathways in amoebae that may support L. pneumophila replication and A. castellanii proliferation in environmental conditions.


Assuntos
Acanthamoeba castellanii , Legionella pneumophila , Doença dos Legionários , Sirtuínas , Proteínas de Bactérias/genética , Humanos , Legionella pneumophila/genética , Transcriptoma
15.
Proc Natl Acad Sci U S A ; 117(12): 6801-6810, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152125

RESUMO

Coxiella burnetii is an intracellular pathogen that replicates in a lysosome-like vacuole through activation of a Dot/Icm-type IVB secretion system and subsequent translocation of effectors that remodel the host cell. Here a genome-wide small interfering RNA screen and reporter assay were used to identify host proteins required for Dot/Icm effector translocation. Significant, and independently validated, hits demonstrated the importance of multiple protein families required for endocytic trafficking of the C. burnetii-containing vacuole to the lysosome. Further analysis demonstrated that the degradative activity of the lysosome created by proteases, such as TPP1, which are transported to the lysosome by receptors, such as M6PR and LRP1, are critical for C. burnetii virulence. Indeed, the C. burnetii PmrA/B regulon, responsible for transcriptional up-regulation of genes encoding the Dot/Icm apparatus and a subset of effectors, induced expression of a virulence-associated transcriptome in response to degradative products of the lysosome. Luciferase reporter strains, and subsequent RNA-sequencing analysis, demonstrated that particular amino acids activate the C. burnetii PmrA/B two-component system. This study has further enhanced our understanding of C. burnetii pathogenesis, the host-pathogen interactions that contribute to bacterial virulence, and the different environmental triggers pathogens can sense to facilitate virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Coxiella burnetii/fisiologia , Interações Hospedeiro-Patógeno , Lisossomos/metabolismo , Febre Q/microbiologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Células HeLa , Humanos , Lisossomos/microbiologia , Transporte Proteico , Tripeptidil-Peptidase 1 , Virulência
16.
J Leukoc Biol ; 107(2): 273-284, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31793076

RESUMO

Legionella pneumophila is an opportunistic human pathogen and causative agent of the acute pneumonia known as Legionnaire's disease. Upon inhalation, the bacteria replicate in alveolar macrophages (AM), within an intracellular vacuole termed the Legionella-containing vacuole. We recently found that, in vivo, IFNγ was required for optimal clearance of intracellular L. pneumophila by monocyte-derived cells (MC), but the cytokine did not appear to influence clearance by AM. Here, we report that during L. pneumophila lung infection, expression of the IFNγ receptor subunit 1 (IFNGR1) is down-regulated in AM and neutrophils, but not MC, offering a possible explanation for why AM are unable to effectively restrict L. pneumophila replication in vivo. To test this, we used mice that constitutively express IFNGR1 in AM and found that prevention of IFNGR1 down-regulation enhanced the ability of AM to restrict L. pneumophila intracellular replication. IFNGR1 down-regulation was independent of the type IV Dot/Icm secretion system of L. pneumophila indicating that bacterial effector proteins were not involved. In contrast to previous work, we found that signaling via type I IFN receptors was not required for IFNGR1 down-regulation in macrophages but rather that MyD88- or Trif- mediated NF-κB activation was required. This work has uncovered an alternative signaling pathway responsible for IFNGR1 down-regulation in macrophages during bacterial infection.


Assuntos
Legionella pneumophila/crescimento & desenvolvimento , Doença dos Legionários/microbiologia , Pulmão/microbiologia , Macrófagos Alveolares/microbiologia , NF-kappa B/metabolismo , Receptores de Interferon/antagonistas & inibidores , Animais , Regulação para Baixo , Interferon Tipo I/metabolismo , Legionella pneumophila/metabolismo , Doença dos Legionários/metabolismo , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Transgênicos , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Transdução de Sinais , Receptor de Interferon gama
17.
Proc Natl Acad Sci U S A ; 116(6): 2265-2273, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30659146

RESUMO

The genus Legionella comprises 65 species, among which Legionella pneumophila is a human pathogen causing severe pneumonia. To understand the evolution of an environmental to an accidental human pathogen, we have functionally analyzed 80 Legionella genomes spanning 58 species. Uniquely, an immense repository of 18,000 secreted proteins encoding 137 different eukaryotic-like domains and over 200 eukaryotic-like proteins is paired with a highly conserved type IV secretion system (T4SS). Specifically, we show that eukaryotic Rho- and Rab-GTPase domains are found nearly exclusively in eukaryotes and Legionella Translocation assays for selected Rab-GTPase proteins revealed that they are indeed T4SS secreted substrates. Furthermore, F-box, U-box, and SET domains were present in >70% of all species, suggesting that manipulation of host signal transduction, protein turnover, and chromatin modification pathways are fundamental intracellular replication strategies for legionellae. In contrast, the Sec-7 domain was restricted to L. pneumophila and seven other species, indicating effector repertoire tailoring within different amoebae. Functional screening of 47 species revealed 60% were competent for intracellular replication in THP-1 cells, but interestingly, this phenotype was associated with diverse effector assemblages. These data, combined with evolutionary analysis, indicate that the capacity to infect eukaryotic cells has been acquired independently many times within the genus and that a highly conserved yet versatile T4SS secretes an exceptional number of different proteins shaped by interdomain gene transfer. Furthermore, we revealed the surprising extent to which legionellae have coopted genes and thus cellular functions from their eukaryotic hosts, providing an understanding of how dynamic reshuffling and gene acquisition have led to the emergence of major human pathogens.


Assuntos
Genoma Bacteriano , Legionella/fisiologia , Legionelose/microbiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Biologia Computacional/métodos , Evolução Molecular , Genômica/métodos , Humanos , Espaço Intracelular/microbiologia , Legionella/classificação , Filogenia , Domínios Proteicos
18.
Cell Microbiol ; 20(9): e12852, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29691989

RESUMO

The intracellular pathogen Legionella pneumophila influences numerous eukaryotic cellular processes through the Dot/Icm-dependent translocation of more than 300 effector proteins into the host cell. Although many translocated effectors localise to the Legionella replicative vacuole, other effectors can affect remote intracellular sites. Following infection, a subset of effector proteins localises to the nucleus where they subvert host cell transcriptional responses to infection. Here, we identified Lpw27461 (Lpp2587), Lpg2519 as a new nuclear-localised effector that we have termed SnpL. Upon ectopic expression or during L. pneumophila infection, SnpL showed strong nuclear localisation by immunofluorescence microscopy but was excluded from nucleoli. Using immunoprecipitation and mass spectrometry, we determined the host-binding partner of SnpL as the eukaryotic transcription elongation factor, Suppressor of Ty5 (SUPT5H)/Spt5. SUPT5H is an evolutionarily conserved component of the DRB sensitivity-inducing factor complex that regulates RNA Polymerase II dependent mRNA processing and transcription elongation. Protein interaction studies showed that SnpL bound to the central Kyprides, Ouzounis, Woese motif region of SUPT5H. Ectopic expression of SnpL led to massive upregulation of host gene expression and macrophage cell death. The activity of SnpL further highlights the ability of L. pneumophila to control fundamental eukaryotic processes such as transcription that, in the case of SnpL, leads to global upregulation of host gene expression.


Assuntos
Interações Hospedeiro-Patógeno , Legionella pneumophila/patogenicidade , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Fatores de Virulência/metabolismo , Animais , Morte Celular , Linhagem Celular , Núcleo Celular/química , Humanos , Imunoprecipitação , Macrófagos/microbiologia , Macrófagos/fisiologia , Espectrometria de Massas , Microscopia de Fluorescência , Ligação Proteica , Transporte Proteico
19.
mSphere ; 3(2)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29577082

RESUMO

Fungi are adept at occupying specific environmental niches and often exploit numerous secondary metabolites generated by the cytochrome P450 (CYP) monoxygenases. This report describes the characterization of a yeast-specific CYP encoded by simA ("survival in macrophages"). Deletion of simA does not affect yeast growth at 37°C in vitro but is essential for yeast cell production during macrophage infection. The ΔsimA strain exhibits reduced conidial germination and intracellular growth of yeast in macrophages, suggesting that the enzymatic product of SimA is required for normal fungal growth in vivo. Intracellular ΔsimA yeast cells exhibit cell wall defects, and metabolomic and chemical sensitivity data suggest that SimA may promote chitin synthesis or deposition in vitro. In vivo, ΔsimA yeast cells subsequently lyse and are degraded, suggesting that SimA may increase resistance to and/or suppress host cell biocidal effectors. The results suggest that simA synthesizes a secondary metabolite that allows T. marneffei to occupy the specific intracellular environmental niche within the macrophage. IMPORTANCE This study in a dimorphic fungal pathogen uncovered a role for a yeast-specific cytochrome P450 (CYP)-encoding gene in the ability of T. marneffei to grow as yeast cells within the host macrophages. This report will inspire further research into the role of CYPs and secondary metabolite synthesis during fungal pathogenic growth.

20.
Artigo em Inglês | MEDLINE | ID: mdl-28861398

RESUMO

Fungal infections are an increasing public health problem, particularly in immunocompromised individuals. While these pathogenic fungi show polyphyletic origins with closely related non-pathogenic species, many undergo morphological transitions to produce pathogenic cell types that are associated with increased virulence. However, the characteristics of these pathogenic cells that contribute to virulence are poorly defined. Talaromyces marneffei grows as a non-pathogenic hyphal form at 25°C but undergoes a dimorphic transition to a pathogenic yeast form at 37°C in vitro and following inhalation of asexual conidia by a host. Here we show that this transition is associated with major changes in central carbon metabolism, and that these changes are correlated with increased virulence of the yeast form. Comprehensive metabolite profiling and 13C-labeling studies showed that hyphal cells exhibited very active glycolytic metabolism and contain low levels of internal carbohydrate reserves. In contrast, yeast cells fully catabolized glucose in the mitochondrial TCA cycle, and store excess glucose in large intracellular pools of trehalose and mannitol. Inhibition of the yeast TCA cycle inhibited replication in culture and in host cells. Yeast, but not hyphae, were also able to use myo-inositol and amino acids as secondary carbon sources, which may support their survival in host macrophages. These analyses suggest that T. marneffei yeast cells exhibit a more efficient oxidative metabolism and are capable of utilizing a diverse range of carbon sources, which contributes to their virulence in animal tissues, highlighting the importance of dimorphic switching in pathogenic yeast.


Assuntos
Metabolômica , Talaromyces/crescimento & desenvolvimento , Talaromyces/metabolismo , Talaromyces/patogenicidade , Aminoácidos/metabolismo , Animais , Metabolismo dos Carboidratos , Carbono/metabolismo , Ciclo do Ácido Cítrico , Regulação Fúngica da Expressão Gênica , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Inositol/metabolismo , Macrófagos/microbiologia , Mitocôndrias/metabolismo , Micoses , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Coloração e Rotulagem , Células THP-1 , Talaromyces/citologia , Temperatura , Virulência , Leveduras/citologia , Leveduras/crescimento & desenvolvimento , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA