Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 16: 789, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26467528

RESUMO

BACKGROUND: Adventitious root (AR) formation is a critical step in vegetative propagation of most ornamental plants, such as carnation. AR formation from stem cuttings is usually divided into several stages according to physiological and metabolic markers. Auxin is often applied exogenously to promote the development of ARs on stem cuttings of difficult-to-root genotypes. RESULTS: By whole transcriptome sequencing, we identified the genes involved in AR formation in carnation cuttings and in response to exogenous auxin. Their expression profiles have been analysed through RNA-Seq during a time-course experiment in the stem cutting base of two cultivars with contrasting efficiencies of AR formation. We explored the kinetics of root primordia formation in these two cultivars and in response to exogenously-applied auxin through detailed histological and physiological analyses. CONCLUSIONS: Our results provide, for the first time, a number of molecular, histological and physiological markers that characterize the different stages of AR formation in this species and that could be used to monitor adventitious rooting on a wide collection of carnation germplasm with the aim to identify the best-rooting cultivars for breeding purposes.


Assuntos
Dianthus/genética , Perfilação da Expressão Gênica/métodos , Raízes de Plantas/genética , Transcriptoma/genética , Dianthus/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Análise em Microsséries/métodos , Proteínas de Plantas/biossíntese , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento
2.
BMC Genomics ; 16: 550, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26216467

RESUMO

BACKGROUND: Vernalization is an obligatory requirement of extended exposure to low temperatures to induce flowering in certain plants. It is the most important factor affecting flowering time and quality in Easter lily (Lilium longiflorum). Exposing the bulbs to 4 °C gradually decreases flowering time up to 50% compared to non-vernalized plants. We aim to understand the molecular regulation of vernalization in Easter lily, for which we characterized the global expression in lily bulb meristems after 0, 2, 5, 7 and 9 weeks of incubation at 4 °C. RESULTS: We assembled de-novo a transcriptome which, after filtering, yielded 121,572 transcripts and 42,430 genes which hold 15,414 annotated genes, with up to 3,657 GO terms. This extensive annotation was mapped to the more general GO slim plant with a total of 94 terms. The response to cold exposure was summarized in 6 expression clusters, providing useful patterns for dissecting the dynamics of vernalization in lily. The functional annotation (GO and GO slim plant) was used to group transcripts in gene sets. Analysis of these gene sets and profiles revealed that most of the enriched functions among genes up-regulated by cold exposure were related to epigenetic processes and chromatin remodeling. Candidate vernalization genes in lily were selected based on their sequence similarity to known regulators of flowering in other species. CONCLUSIONS: We present a detailed analysis of gene expression dynamics during vernalization in Lilium, covering several time points and accounting for biological variation by the use of replicates. The resulting collection of transcripts and novel isoforms provides a useful resource for studying the changes occurring during vernalization at a fine level. The selected potential candidate genes can shed light on the regulation of this process.


Assuntos
Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Genes de Plantas , Lilium/genética , Temperatura Baixa , Epigênese Genética , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Lilium/fisiologia , Anotação de Sequência Molecular
3.
Development ; 142(3): 454-64, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25564655

RESUMO

Aintegumenta-like (AIL) transcription factors are key regulators of cell proliferation and meristem identity. Although AIL functions have been well described, the direct signalling components of this pathway are largely unknown. We show that baby boom (BBM) and other AIL proteins physically interact with multiple members of the L1-expressed homeodomain glabrous (HDG) transcription factor family, including HDG1, HDG11 and HDG12. Overexpression of HDG1, HDG11 and HDG12 restricts growth due to root and shoot meristem arrest, which is associated with reduced expression of genes involved in meristem development and cell proliferation pathways, whereas downregulation of multiple HDG genes promotes cell overproliferation. These results suggest a role for HDG proteins in promoting cell differentiation. We also reveal a transcriptional network in which BBM and HDG1 regulate several common target genes, and where BBM/AIL and HDG regulate the expression of each other. Taken together, these results suggest opposite roles for AIL and HDG proteins, with AILs promoting cell proliferation and HDGs stimulating cell differentiation, and that these functions are mediated at both the protein-protein interaction and transcriptional level.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Imunoprecipitação da Cromatina , Microscopia Crioeletrônica , Primers do DNA/genética , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica de Plantas/genética , Vetores Genéticos/genética , Análise em Microsséries , Microscopia Confocal , Família Multigênica/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Fatores de Transcrição/genética
4.
Plant Mol Biol ; 68(3): 225-37, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18663586

RESUMO

Ectopic expression of the Brassica napus BABY BOOM (BBM) AP2/ERF transcription factor is sufficient to induce spontaneous cell proliferation leading primarily to somatic embryogenesis, but also to organogenesis and callus formation. We used DNA microarray analysis in combination with a post-translationally regulated BBM:GR protein and cycloheximide to identify target genes that are directly activated by BBM expression in Arabidopsis seedlings. We show that BBM activated the expression of a largely uncharacterized set of genes encoding proteins with potential roles in transcription, cellular signaling, cell wall biosynthesis and targeted protein turnover. A number of the target genes have been shown to be expressed in meristems or to be involved in cell wall modifications associated with dividing/growing cells. One of the BBM target genes encodes an ADF/cofilin protein, ACTIN DEPOLYMERIZING FACTOR9 (ADF9). The consequences of BBM:GR activation on the actin cytoskeleton were followed using the GFP:FIMBRIN ACTIN BINDING DOMAIN2 (GFP:FABD) actin marker. Dexamethasone-mediated BBM:GR activation induced dramatic changes in actin organization resulting in the formation of dense actin networks with high turnover rates, a phenotype that is consistent with cells that are rapidly undergoing cytoplasmic reorganization. Together the data suggest that the BBM transcription factor activates a complex network of developmental pathways associated with cell proliferation and growth.


Assuntos
Arabidopsis/citologia , Brassica napus/genética , Crescimento Celular , Fatores de Transcrição/metabolismo , Actinas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proliferação de Células , Citoesqueleto/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fatores de Transcrição/genética
5.
Arabidopsis Book ; 1: e0023, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-22303199

RESUMO

Plant chitinases (EC 3.2.1.14) belong to relatively large gene families subdivided in classes that suggest class-specific functions. They are commonly induced upon the attack of pathogens and by various sources of stress, which led to associating them with plant defense in general. However, it is becoming apparent that most of them display several functions during the plant life cycle, including taking part in developmental processes such as pollination and embryo development. The number of chitinases combined with their multiple functions has been an obstacle to a better understanding of their role in plants. It is therefore important to identify and inventory all chitinase genes of a plant species to be able to dissect their function and understand the relations between the different classes. Complete sequencing of the Arabidopsis genome has made this task feasible and we present here a survey of all putative chitinase-encoding genes accompanied by a detailed analysis of their sequence. Based on their characteristics and on studies on other plant chitinases, we propose an overview of their possible functions as well as modified annotations for some of them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA