Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Br J Radiol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833685

RESUMO

Immune checkpoint inhibitors (ICI) have revolutionized cancer treatment; yet their efficacy remains variable across patients. This review delves into the intricate interplay of tumor characteristics contributing to resistance against ICI therapy and suggests that combining with radiotherapy (RT) holds promise. Radiation, known for its ability to trigger immunogenic cell death and foster an in situ vaccination effect, may counteract these resistance mechanisms, enhancing ICI response and patient outcomes. However, particularly when delivered at high-dose, it may trigger immunosuppressive mechanism and consequent side-effects. Notably, low-dose radiotherapy (LDRT), with its capacity for tumor reprogramming and reduced side effects, offers the potential for widespread application. Preclinical and clinical studies have shown encouraging results in this regard.

2.
Int Rev Cell Mol Biol ; 378: 137-156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37438016

RESUMO

Therapeutic monoclonal antibodies blocking different immune checkpoints, have demonstrated efficacy against a wide variety of solid tumors. The exclusion or absence of lymphocytes within the tumor microenvironment (TME) is one of the main resistance mechanisms to immune checkpoint inhibitor (ICI)-based therapies. Therefore, there is a growing interest in identifying novel approaches to promote T cell infiltration on immune-deserted (cold) and immune-excluded tumors to turn them into inflamed (hot) tumors. Here, we provide a comprehensive overview of the recently published studies showing the potential of low-dose radiation (LDRT) to reprogram the TME to allow and promote T-cell infiltration and thus, improve currently approved ICI-based therapies.


Assuntos
Anticorpos Monoclonais , Imunoterapia , Microambiente Tumoral
3.
Cell Rep ; 39(5): 110777, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35508133

RESUMO

Neutrophils are specialized innate immune cells known for their ability to fight pathogens. However, the mechanisms of neutrophil trafficking to lymph nodes are not fully clear. Using a murine model of dermal infection with Leishmania parasites, we observe a transient neutrophil influx in draining lymph nodes despite sustained recruitment to the infection site. Cell-tracking experiments, together with intravital two-photon microscopy, indicate that neutrophil recruitment to draining lymph nodes occurs minimally through lymphatics from the infected dermis, but mostly through blood vessels via high endothelial venules. Mechanistically, neutrophils do not respond to IL-1ß or macrophage-derived molecules. Instead, they are guided by the C5a-C5aR1 axis, using L-selectin and integrins, to extravasate into the draining lymph node parenchyma. We also report that C5, the C5a precursor, is locally produced in the draining lymph node by lymphatic endothelial cells. Our data establish and detail organ-specific mechanisms of neutrophil trafficking.


Assuntos
Complemento C5a , Leishmaniose Cutânea , Animais , Células Endoteliais , Linfonodos , Camundongos , Infiltração de Neutrófilos , Neutrófilos , Receptor da Anafilatoxina C5a , Vênulas
4.
PLoS Pathog ; 18(1): e1010247, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041723

RESUMO

Neutrophils are the first line of defence against invading pathogens. Although neutrophils are well-known professional killers, some pathogens including Leishmania (L.) parasites survive in neutrophils, using these cells to establish infection. Manipulation of neutrophil recruitment to the infection site is therefore of interest in this cutaneous disease. The c-MET tyrosine kinase receptor was shown to promote neutrophil migration to inflamed sites. Here, we investigated the importance of c-MET expression on neutrophils in their recruitment to the infection site and the role of c-Met expression in the pathology of leishmaniasis. Following infection with L. mexicana, mice with conditional deletion of c-MET in neutrophils controlled significantly better their lesion development and parasite burden compared to similarly infected wild type mice. Our data reveal a specific role for c-MET activation in Leishmania-induced neutrophil infiltration, a process correlating with their negative role in the pathology of the diseases. We further show that c-MET phosphorylation is observed in established cutaneous lesions. Exposure to L. mexicana upregulated c-Met expression predominantly in infected neutrophils and c-Met expression influenced ROS release by neutrophils. In addition, pharmacological inhibition of c-MET, administrated once the lesion is established, induced a significant decrease in lesion size associated with diminished infiltration of neutrophils. Both genetic ablation of c-MET in neutrophils and systemic inhibition of c-MET locally resulted in higher levels of CD4+T cells producing IFNγ, suggesting a crosstalk between neutrophils and these cells. Collectively, our data show that c-MET activation in neutrophils contributes to their recruitment following infection, and that L. mexicana induction of c-MET on neutrophils impacts the local pathology associated with this disease. Our results suggest a potential use for this inhibitor in the control of the cutaneous lesion during this parasitic infection.


Assuntos
Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/patologia , Neutrófilos/imunologia , Proteínas Proto-Oncogênicas c-met/imunologia , Animais , Leishmaniose Cutânea/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Infiltração de Neutrófilos/imunologia , Proteínas Proto-Oncogênicas c-met/metabolismo
5.
Front Immunol ; 12: 649348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732265

RESUMO

Leishmania (L.) are obligate intracellular protozoan parasites that cause the leishmaniases, a spectrum of neglected infectious vector-borne diseases with a broad range of clinical manifestations ranging from local cutaneous, to visceral forms of the diseases. The parasites are deposited in the mammalian skin during the blood meal of an infected female phlebotomine sand fly. The skin is a complex organ acting as the first line of physical and immune defense against pathogens. Insults to skin integrity, such as that occurring during insect feeding, induces the local secretion of pro-inflammatory molecules generating the rapid recruitment of neutrophils. At the site of infection, skin keratinocytes play a first role in host defense contributing to the recruitment of inflammatory cells to the infected dermis, of which neutrophils are the first recruited cells. Although neutrophils efficiently kill various pathogens including Leishmania, several Leishmania species have developed mechanisms to survive in these cells. In addition, through their rapid release of cytokines, neutrophils modulate the skin microenvironment at the site of infection, a process shaping the subsequent development of the adaptive immune response. Neutrophils may also be recruited later on in unhealing forms of cutaneous leishmaniasis and to the spleen and liver in visceral forms of the disease. Here, we will review the mechanisms involved in neutrophil recruitment to the skin following Leishmania infection focusing on the role of keratinocytes in this process. We will also discuss the distinct involvement of neutrophils in the outcome of leishmaniasis.


Assuntos
Queratinócitos/imunologia , Leishmania/imunologia , Leishmaniose Cutânea/imunologia , Neutrófilos/imunologia , Pele/parasitologia , Comunicação Celular/imunologia , Interações Hospedeiro-Parasita/imunologia , Humanos , Queratinócitos/metabolismo , Queratinócitos/parasitologia , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Infiltração de Neutrófilos , Neutrófilos/parasitologia , Pele/imunologia , Pele/patologia
6.
Cell Rep ; 31(10): 107746, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32521271

RESUMO

Neutrophils are rapidly recruited to sites of infection, where they kill invading pathogens. However, they may also act as early temporary shelters, favoring subsequent pathogen dissemination in the host. We find that TLR7 sensing of the protozoan Leishmania parasite in neutrophils is essential for early parasite load regulation. Neutrophil effector functions, including reactive oxygen species (ROS) and neutrophil extracellular trap formation, are decreased in the absence of TLR7, resulting in higher parasite load and selective parasite replication in Tlr7-/- neutrophils. Leishmania-infected Tlr7-/- mice develop a chronic unhealing lesion, despite Th1 cell differentiation, and we show that Tlr7-/- neutrophils alone mediate this effect. Conversely, topical treatment with a TLR7 agonist early in infection induces smaller lesion development than in untreated mice. Collectively, these findings highlight that parasite TLR7 triggering in neutrophils regulates early innate functions with major consequences on subsequent disease evolution, opening avenues for possible treatment strategies.


Assuntos
Leishmaniose Cutânea/imunologia , Glicoproteínas de Membrana/imunologia , Neutrófilos/imunologia , Receptor 7 Toll-Like/imunologia , Adulto , Animais , Feminino , Humanos , Leishmaniose Cutânea/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo
7.
Sci Immunol ; 5(46)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276966

RESUMO

Tissue-resident macrophages (TRMs) maintain tissue homeostasis, but they can also provide a replicative niche for intracellular pathogens such as Leishmania How dermal TRMs proliferate and maintain their M2 properties even in the strong TH1 environment of the L. major infected dermis is not clear. Here, we show that, in infected mice lacking IL-4/13 from eosinophils, dermal TRMs shifted to a proinflammatory state, their numbers declined, and disease was attenuated. Intravital microscopy revealed a rapid infiltration of eosinophils followed by their tight interaction with dermal TRMs. IL-4-stimulated dermal TRMs, in concert with IL-10, produced a large amount of CCL24, which functioned to amplify eosinophil influx and their interaction with dermal TRMs. An intraperitoneal helminth infection model also demonstrated a requirement for eosinophil-derived IL-4 to maintain tissue macrophages through a CCL24-mediated amplification loop. CCL24 secretion was confined to resident macrophages in other tissues, implicating eosinophil-TRM cooperative interactions in diverse inflammatory settings.


Assuntos
Quimiocina CCL24/imunologia , Eosinófilos/imunologia , Interleucina-4/imunologia , Leishmaniose Cutânea/imunologia , Macrófagos/imunologia , Pele/imunologia , Animais , Interleucina-4/deficiência , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pele/citologia
8.
J Invest Dermatol ; 139(6): 1318-1328, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30594488

RESUMO

Neutrophils are rapidly recruited to the mammalian skin in response to infection with the cutaneous Leishmania pathogen. The parasites use neutrophils to establish the disease; however, the signals driving early neutrophil recruitment are poorly known. Here, we identified the functional importance of TLR2 signaling in this process. Using bone marrow chimeras and immunohistology, we identified the TLR2-expressing cells involved in this early neutrophil recruitment to be of nonhematopoietic origin. Keratinocytes are damaged and briefly in contact with the parasites during infection. We show that TLR2 triggering by Leishmania major is required for their secretion of neutrophil-attracting chemokines. Furthermore, TLR2 triggering by L. major phosphoglycans is critical for neutrophil recruitment to negatively affect disease development, as shown by better control of lesion size and parasite load in Tlr2-/- compared with wild-type infected mice. Conversely, restoring early neutrophil presence in Tlr2-/- mice through injection of wild-type neutrophils or CXCL1 at the onset of infection resulted in delayed disease resolution comparable to that observed in wild-type mice. Taken together, our data show a crucial role for TLR2-expressing nonhematopoietic skin cells in the recruitment of the first wave of neutrophils after L. major infection, a process that delays disease control.


Assuntos
Queratinócitos/metabolismo , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Neutrófilos/imunologia , Receptor 2 Toll-Like/metabolismo , Animais , Transplante de Medula Óssea , Comunicação Celular/imunologia , Quimiocina CXCL1/imunologia , Quimiocina CXCL1/metabolismo , Modelos Animais de Doenças , Humanos , Queratinócitos/imunologia , Leishmania major/isolamento & purificação , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos , Carga Parasitária , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Pele/citologia , Pele/imunologia , Pele/parasitologia , Pele/patologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Quimeras de Transplante
9.
Infect Immun ; 86(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30275010

RESUMO

The skin microenvironment at the site of infection plays a role in the early events that determine protective T helper 1/type 1 immune responses during cutaneous leishmaniasis (CL) infection. During CL in nonhealing BALB/c mice, early interleukin-4 (IL-4) can instruct dendritic cells for protective Th1 immunity. Additionally, keratinocytes, which are the principal cell type in the skin epidermis, have been shown to secrete IL-4 early after Leishmania major infection. Here, we investigated whether IL-4/IL-13 signaling via the common IL-4 receptor alpha chain (IL-4Rα) on keratinocytes contributes to susceptibility during experimental CL. To address this, keratinocyte-specific IL-4Rα-deficient (KRT14cre IL-4Rα-/lox) mice on a BALB/c genetic background were generated by gene targeting and site-specific recombination (Cre/loxP) under the control of the keratinocyte-specific krt14 locus. Following high-dose infection with L. major IL-81 and LV39 promastigotes subcutaneously in the footpad, footpad swelling, parasite burden, IFN-γ/IL-4/IL-13 cytokine production, and type 1 and type 2 antibody responses were similar between KRT14cre IL-4Rα-/lox and littermate control IL-4Rα-/lox BALB/c mice. An intradermal infection with low-dose L. major IL-81 and LV39 promastigotes in the ear showed results in infected KRT14cre IL-4Rα-/lox BALB/c mice similar to those of littermate control IL-4Rα-/lox BALB/c mice, with the exception of a significant decrease observed in parasite burden only at the site of LV39 infection in the ear. Collectively, our results show that autocrine and paracrine signaling of IL-4/IL-13 through the IL-4Rα chain on keratinocytes does not influence the establishment of a nonhealing Th2 immune response in BALB/c mice during L. major infection.


Assuntos
Deleção de Genes , Subunidade alfa de Receptor de Interleucina-4/genética , Queratinócitos/imunologia , Leishmaniose Cutânea/imunologia , Transdução de Sinais/imunologia , Animais , Comunicação Autócrina/imunologia , Linfócitos T CD4-Positivos , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/parasitologia , Feminino , Interleucina-13/imunologia , Queratinócitos/parasitologia , Leishmania major/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Comunicação Parácrina/imunologia , Células Th2/imunologia
10.
Front Immunol ; 8: 1558, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29250059

RESUMO

Neutrophils are the most abundant leukocytes in human blood. Upon microbial infection, they are massively and rapidly recruited from the circulation to sites of infection where they efficiently kill pathogens. To this end, neutrophils possess a variety of weapons that can be mobilized and become effective within hours following infection. However, several microbes including some Leishmania spp. have evolved a variety of mechanisms to escape neutrophil killing using these cells as a basis to better invade the host. In addition, neutrophils are also present in unhealing cutaneous lesions where their role remains to be defined. Here, we will review recent progress in the field and discuss the different strategies applied by some Leishmania parasites to escape from being killed by neutrophils and as recently described for Leishmania mexicana, even replicate within these cells. Subversion of neutrophil killing functions by Leishmania is a strategy that allows parasite spreading in the host with a consequent deleterious impact, transforming the primary protective role of neutrophils into a deleterious one.

11.
Front Immunol ; 8: 1265, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29067025

RESUMO

Experimental infection with the protozoan parasite Leishmania major has been extensively used to understand the mechanisms involved in T helper cell differentiation. Following infection, C57BL/6 mice develop a small self-healing cutaneous lesion and they are able to control parasite burden, a process linked to the development of T helper (Th) 1 cells. The local presence of IL-12 has been reported to be critical in driving Th1 cell differentiation. In addition, the early secretion of IL-4 was reported to potentially contribute to Th1 cell differentiation. Following infection with L. major, early keratinocyte-derived IL-4 was suggested to contribute to Th1 cell differentiation. To investigate a putative autocrine role of IL-4 signaling on keratinocytes at the site of infection, we generated C57BL/6 mice deficient for IL-4Rα expression selectively in keratinocytes. Upon infection with L. major, these mice could control their inflammatory lesion and parasite load correlating with the development of Th1 effector cells. These data demonstrate that IL-4 signaling on keratinocytes does not contribute to Th1 cell differentiation. To further investigate the source of IL-4 in the skin during the first days after L. major infection, we used C57BL/6 IL-4 reporter mice allowing the visualization of IL-4 mRNA expression and protein production. These mice were infected with L. major. During the first 3 days after infection, skin IL-4 mRNA expression was observed selectively in mast cells. However, no IL-4 protein production was detectable locally. In addition, early IL-4 blockade locally had no impact on subsequent Th1 cell differentiation and control of the disease. Taken together, the present data rule out a major role for skin IL-4 and keratinocyte IL-4Rα signaling in the development of a Th1 protective immune response following experimental infection with L. major.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA