RESUMO
New technologies enable the opportunity to improve our monitoring and understanding of marine phytoplankton communities. However, careful consideration for how different methodological approaches, or 'lenses', influence our interpretation of phytoplankton ecology is important, particularly when drawing conclusions about change over time or space. Using both high-throughput 18S rRNA gene sequencing and microscopy, we explored how phytoplankton community structure varied over the course of a year within a nearshore semi-enclosed coastal embayment along the Central Coast of California. The seasonal shift in the relative community dominance (i.e., diatom vs. dinoflagellate dominance) was captured in the microscopy results but not effectively captured in the molecular-based findings. However, the molecular approach explained more of the variability in composition across seasons relative to the microscopy approach. Temporal dynamics of specific bloom-forming taxa also differed between the molecular and microscopy results. Overall, the observed differences between the molecular- and microscopy-derived characterization of phytoplankton dynamics suggest that the approaches are best suited to answer different research questions. Moreover, the approaches complement each other for a more comprehensive perspective of a coastal phytoplankton ecosystem. Therefore, identifying the biases of each approach within natural communities is necessary to effectively and accurately characterize phytoplankton communities.
Assuntos
Diatomáceas , Dinoflagellida , Fitoplâncton/genética , Ecossistema , Diatomáceas/genética , Dinoflagellida/genética , Estações do AnoRESUMO
Aerobic plate counts, the standard for bacterial enumeration in the probiotic industry, can be biased towards fast-growing organisms that replicate on synthetic media and can significantly underestimate total bacterial abundance. Culture-independent approaches such as fluorescence in situ hybridization (FISH) hold promise as a means to rapidly and accurately enumerate bacteria in probiotic products. In addition, FISH has the potential to more accurately represent bacterial growth dynamics in the environment in which products are applied without imposing additional growth constraints that are required for enumeration via plate counts. In this study, we designed and optimized three new FISH probes to visualize and quantify Bacillus amyloliquefaciens, Bacillus pumilus, and Bacillus licheniformis within probiotic products. Microscopy-based estimates were consistent or higher than label claims for Pediococcus acidilactici, Pediococcus pentosaceus, Lactobacillus plantarum, Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus pumilus in both a direct fed microbial (DFM) product as well as a crop microbial biostimulant (CMB) product. Quantification with FISH after a germination experiment revealed the potential for this approach to be used after application of the product.
Assuntos
Bacillus/ultraestrutura , Hibridização in Situ Fluorescente/métodos , Microscopia/métodos , Probióticos , FluorescênciaRESUMO
In the last two decades, the need for seawater pH control methodologies paralleled the rise in attention to the biological impacts of ocean acidification. Many effective and high-performing systems have been created, but they are often expensive, complex, and difficult to establish. We developed a system that is similarly high performing, but at a low cost and with a simple and accessible design. This system is controlled by an Arduino Nano, an open-source electronics platform, which regulates the flow of CO2 gas through electric solenoid valves. The Arduino and other inexpensive materials total â¼$150 (plus CO2 gas and regulator), and a new treatment can be added for less than $35. Easy-to-learn code and simple wire-to-connect hardware make the design extremely accessible, requiring little time and expertise to establish. The system functions with a variety of pH probes and can be adapted to fit a variety of experimental designs and organisms. Using this set up, we were able to constrain seawater pH within a range of 0.07 pH units. Our system thus maintains the performance and adaptability of existing systems but expands their accessibility by reducing cost and complexity.
RESUMO
While the collective impact of marine viruses has become more apparent over the last decade, a deeper understanding of virus-host dynamics and the role of viruses in nutrient cycling would benefit from direct observations at the single-virus level. We describe two new complementary approaches - stable isotope probing coupled with nanoscale secondary ion mass spectrometry (nanoSIMS) and fluorescence-based biorthogonal non-canonical amino acid tagging (BONCAT) - for studying the activity and biogeochemical influence of marine viruses. These tools were developed and tested using several ecologically relevant model systems (Emiliania huxleyi/EhV207, Synechococcus sp. WH8101/Syn1 and Escherichia coli/T7). By resolving carbon and nitrogen enrichment in viral particles, we demonstrate the power of nanoSIMS tracer experiments in obtaining quantitative estimates for the total number of viruses produced directly from a particular production pathway (by isotopically labelling host substrates). Additionally, we show through laboratory experiments and a pilot field study that BONCAT can be used to directly quantify viral production (via epifluorescence microscopy) with minor sample manipulation and no dependency on conversion factors. This technique can also be used to detect newly synthesized viral proteins. Together these tools will help fill critical gaps in our understanding of the biogeochemical impact of viruses in the ocean.
Assuntos
Interações entre Hospedeiro e Microrganismos , Marcação por Isótopo , Espectrometria de Massa de Íon Secundário , Vírus , Microbiologia da Água , Aminoácidos/análise , Fluorescência , Haptófitas , Synechococcus , Fenômenos Fisiológicos ViraisRESUMO
Collectively, phagotrophic algae (mixotrophs) form a functional continuum of nutritional modes between autotrophy and heterotrophy, but the specific physiological benefits of mixotrophic nutrition differ among taxa. Ochromonas spp. are ubiquitous chrysophytes that exhibit high nutritional flexibility, although most species generally fall towards the heterotrophic end of the mixotrophy spectrum. We assessed the sources of carbon and nitrogen in Ochromonas sp. strain BG-1 growing mixotrophically via short-term stable isotope probing. An axenic culture was grown in the presence of either heat-killed bacteria enriched with 15N and 13C, or unlabeled heat-killed bacteria and labeled inorganic substrates (13C-bicarbonate and 15N-ammonium). The alga exhibited high growth rates (up to 2 divisions per day) only until heat-killed bacteria were depleted. NanoSIMS and bulk IRMS isotope analyses revealed that Ochromonas obtained 84-99% of its carbon and 88-95% of its nitrogen from consumed bacteria. The chrysophyte assimilated inorganic 13C-carbon and 15N-nitrogen when bacterial abundances were very low, but autotrophic (photosynthetic) activity was insufficient to support net population growth of the alga. Our use of nanoSIMS represents its first application towards the study of a mixotrophic alga, enabling a better understanding and quantitative assessment of carbon and nutrient acquisition by this species.
Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Ochromonas/metabolismo , Ochromonas/microbiologia , Processos Autotróficos , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Processos Heterotróficos , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/metabolismo , Ochromonas/genética , Ochromonas/isolamento & purificação , FotossínteseRESUMO
We investigated phytoplankton production rates and grazing fates in the Costa Rica Dome (CRD) during summer 2010 based on dilution depth profiles analyzed by flow cytometry and pigments and mesozooplankton grazing assessed by gut fluorescence. Three community production estimates, from 14C uptake (1025 ± 113 mg C m-2 day-1) and from dilution experiments analyzed for total Chla (990 ± 106 mg C m-2 day-1) and flow cytometry populations (862 ± 71 mg C m-2 day-1), exceeded regional ship-based values by 2-3-fold. Picophytoplankton accounted for 56% of community biomass and 39% of production. Production profiles extended deeper for Prochlorococcus (PRO) and picoeukaryotes than for Synechococcus (SYN) and larger eukaryotes, but 93% of total production occurred above 40 m. Microzooplankton consumed all PRO and SYN growth and two-third of total production. Positive net growth of larger eukaryotes in the upper 40 m was balanced by independently measured consumption by mesozooplankton. Among larger eukaryotes, diatoms contributed â¼3% to production. On the basis of this analysis, the CRD region is characterized by high production and grazing turnover, comparable with or higher than estimates for the eastern equatorial Pacific. The region nonetheless displays characteristics atypical of high productivity, such as picophytoplankton dominance and suppressed diatom roles.
RESUMO
Although chemosynthetic ecosystems are known to support diverse assemblages of microorganisms, the ecological and environmental factors that structure microbial eukaryotes (heterotrophic protists and fungi) are poorly characterized. In this study, we examined the geographic, geochemical and ecological factors that influence microbial eukaryotic composition and distribution patterns within Hydrate Ridge, a methane seep ecosystem off the coast of Oregon using a combination of high-throughput 18S rRNA tag sequencing, terminal restriction fragment length polymorphism fingerprinting, and cloning and sequencing of full-length 18S rRNA genes. Microbial eukaryotic composition and diversity varied as a function of substrate (carbonate versus sediment), activity (low activity versus active seep sites), sulfide concentration, and region (North versus South Hydrate Ridge). Sulfide concentration was correlated with changes in microbial eukaryotic composition and richness. This work also revealed the influence of oxygen content in the overlying water column and water depth on microbial eukaryotic composition and diversity, and identified distinct patterns from those previously observed for bacteria, archaea and macrofauna in methane seep ecosystems. Characterizing the structure of microbial eukaryotic communities in response to environmental variability is a key step towards understanding if and how microbial eukaryotes influence seep ecosystem structure and function.
Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Eucariotos/isolamento & purificação , Metano/metabolismo , Água do Mar/microbiologia , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Ecossistema , Eucariotos/classificação , Eucariotos/genética , Oregon , Filogenia , Água do Mar/análise , Água do Mar/parasitologiaRESUMO
Microbes living in stagnant water typically rely on chemical diffusion to draw nutrients from their environment. The sulfur-oxidizing bacterium Thiovulum majus and the ciliate Uronemella have independently evolved the ability to form a 'veil', a centimetre-scale mucous sheet on which cells organize to produce a macroscopic flow. This flow pulls nutrients through the community an order of magnitude faster than diffusion. To understand how natural selection led these microbes to evolve this collective behaviour, we connect the physical limitations acting on individual cells to the cell traits. We show how diffusion limitation and viscous dissipation have led individual T. majus and Uronemella cells to display two similar characteristics. Both of these cells exert a force of approximately 40 pN on the water and attach to boundaries by means of a mucous stalk. We show how the diffusion coefficient of oxygen in water and the viscosity of water define the force the cells must exert. We then show how the hydrodynamics of filter-feeding orient a microbe normal to the surface to which it attaches. Finally, we combine these results with new observations of veil formation and a review of veil dynamics to compare the collective dynamics of these microbes. We conclude that this convergent evolution is a reflection of similar physical limitations imposed by diffusion and viscosity acting on individual cells.
RESUMO
UNLABELLED: Marine methane seeps are globally distributed geologic features in which reduced fluids, including methane, are advected upward from the subsurface. As a result of alkalinity generation during sulfate-coupled methane oxidation, authigenic carbonates form slabs, nodules, and extensive pavements. These carbonates shape the landscape within methane seeps, persist long after methane flux is diminished, and in some cases are incorporated into the geologic record. In this study, microbial assemblages from 134 native and experimental samples across 5,500 km, representing a range of habitat substrates (carbonate nodules and slabs, sediment, bottom water, and wood) and seepage conditions (active and low activity), were analyzed to address two fundamental questions of seep microbial ecology: (i) whether carbonates host distinct microbial assemblages and (ii) how sensitive microbial assemblages are to habitat substrate type and temporal shifts in methane seepage flux. Through massively parallel 16S rRNA gene sequencing and statistical analysis, native carbonates are shown to be reservoirs of distinct and highly diverse seep microbial assemblages. Unique coupled transplantation and colonization experiments on the seafloor demonstrated that carbonate-associated microbial assemblages are resilient to seep quiescence and reactive to seep activation over 13 months. Various rates of response to simulated seep quiescence and activation are observed among similar phylogenies (e.g., Chloroflexi operational taxonomic units) and similar metabolisms (e.g., putative S oxidizers), demonstrating the wide range of microbial sensitivity to changes in seepage flux. These results imply that carbonates do not passively record a time-integrated history of seep microorganisms but rather host distinct, diverse, and dynamic microbial assemblages. IMPORTANCE: Since their discovery in 1984, the global distribution and importance of marine methane seeps have become increasingly clear. Much of our understanding of methane seep microorganisms-from metabolisms to community ecology-has stemmed from detailed studies of seep sediments. However, it has become apparent that carbonates represent a volumetrically significant habitat substrate at methane seeps. Through combined in situ characterization and incubation experiments, this study demonstrates that carbonates host microbial assemblages distinct from and more diverse than those of other seep habitats. This emphasizes the importance of seep carbonates as biodiversity locales. Furthermore, we demonstrate that carbonate-associated microbial assemblages are well adapted to withstand fluctuations in methane seepage, and we gain novel insight into particular taxa that are responsive (or recalcitrant) to changes in seep conditions.