Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(11): 2813-2822, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38817428

RESUMO

Electrocatalysts containing a Ni/NiO/N-doped graphene interface have been synthesised using the ligand-assisted chemical vapor deposition technique. NiO nanoparticles were used as the substrate to grow N-doped graphene by decomposing vapours of benzene and N-containing ligands. The method was demonstrated with two nitrogen-containing ligands, namely dipyrazino[2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile (L) and melamine (M). The structure and composition of the as-synthesized composites were characterized by XRD, Raman spectroscopy, SEM, TEM and XPS. The composite prepared using the ligand L had NiO sandwiched between Ni and N-doped graphene and showed an overpotential of 292 mV at 10 mA cm-2 and a Tafel slope of 45.41 mV dec-1 for the OER, which is comparable to the existing noble metal catalysts. The composite prepared using the ligand M had Ni encapsulated by N-doped graphene without NiO. It showed an overpotential of 390 mV at 10 mA cm-2 and a Tafel slope of 78.9 mV dec-1. The ligand-assisted CVD route demonstrates a facile route to control the microstructure of the electrocatalysts.

2.
Nano Converg ; 9(1): 26, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666392

RESUMO

Quantum flatland i.e., the family of two dimensional (2D) quantum materials has become increscent and has already encompassed elemental atomic sheets (Xenes), 2D transition metal dichalcogenides (TMDCs), 2D metal nitrides/carbides/carbonitrides (MXenes), 2D metal oxides, 2D metal phosphides, 2D metal halides, 2D mixed oxides, etc. and still new members are being explored. Owing to the occurrence of various structural phases of each 2D material and each exhibiting a unique electronic structure; bestows distinct physical and chemical properties. In the early years, world record electronic mobility and fractional quantum Hall effect of graphene attracted attention. Thanks to excellent electronic mobility, and extreme sensitivity of their electronic structures towards the adjacent environment, 2D materials have been employed as various ultrafast precision sensors such as gas/fire/light/strain sensors and in trace-level molecular detectors and disease diagnosis. 2D materials, their doped versions, and their hetero layers and hybrids have been successfully employed in electronic/photonic/optoelectronic/spintronic and straintronic chips. In recent times, quantum behavior such as the existence of a superconducting phase in moiré hetero layers, the feasibility of hyperbolic photonic metamaterials, mechanical metamaterials with negative Poisson ratio, and potential usage in second/third harmonic generation and electromagnetic shields, etc. have raised the expectations further. High surface area, excellent young's moduli, and anchoring/coupling capability bolster hopes for their usage as nanofillers in polymers, glass, and soft metals. Even though lab-scale demonstrations have been showcased, large-scale applications such as solar cells, LEDs, flat panel displays, hybrid energy storage, catalysis (including water splitting and CO2 reduction), etc. will catch up. While new members of the flatland family will be invented, new methods of large-scale synthesis of defect-free crystals will be explored and novel applications will emerge, it is expected. Achieving a high level of in-plane doping in 2D materials without adding defects is a challenge to work on. Development of understanding of inter-layer coupling and its effects on electron injection/excited state electron transfer at the 2D-2D interfaces will lead to future generation heterolayer devices and sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA