Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Res ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744980
2.
Nat Chem Biol ; 20(6): 673-688, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702571

RESUMO

Prokaryotes are equipped with a variety of resistance strategies to survive frequent viral attacks or invading mobile genetic elements. Among these, CRISPR-Cas surveillance systems are abundant and have been studied extensively. This Review focuses on CRISPR-Cas type VI Cas13 systems that use single-subunit RNA-guided Cas endonucleases for targeting and subsequent degradation of foreign RNA, thereby providing adaptive immunity. Notably, distinct from single-subunit DNA-cleaving Cas9 and Cas12 systems, Cas13 exhibits target RNA-activated substrate RNase activity. This Review outlines structural, biochemical and cell biological studies toward elucidation of the unique structural and mechanistic principles underlying surveillance effector complex formation, precursor CRISPR RNA (pre-crRNA) processing, self-discrimination and RNA degradation in Cas13 systems as well as insights into suppression by bacteriophage-encoded anti-CRISPR proteins and regulation by endogenous accessory proteins. Owing to its programmable ability for RNA recognition and cleavage, Cas13 provides powerful RNA targeting, editing, detection and imaging platforms with emerging biotechnological and therapeutic applications.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , RNA/metabolismo , RNA/genética , RNA/química , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Bacteriófagos/genética
3.
Nature ; 625(7996): 797-804, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200316

RESUMO

Prokaryotic type III CRISPR-Cas systems provide immunity against viruses and plasmids using CRISPR-associated Rossman fold (CARF) protein effectors1-5. Recognition of transcripts of these invaders with sequences that are complementary to CRISPR RNA guides leads to the production of cyclic oligoadenylate second messengers, which bind CARF domains and trigger the activity of an effector domain6,7. Whereas most effectors degrade host and invader nucleic acids, some are predicted to contain transmembrane helices without an enzymatic function. Whether and how these CARF-transmembrane helix fusion proteins facilitate the type III CRISPR-Cas immune response remains unknown. Here we investigate the role of cyclic oligoadenylate-activated membrane protein 1 (Cam1) during type III CRISPR immunity. Structural and biochemical analyses reveal that the CARF domains of a Cam1 dimer bind cyclic tetra-adenylate second messengers. In vivo, Cam1 localizes to the membrane, is predicted to form a tetrameric transmembrane pore, and provides defence against viral infection through the induction of membrane depolarization and growth arrest. These results reveal that CRISPR immunity does not always operate through the degradation of nucleic acids, but is instead mediated via a wider range of cellular responses.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Potenciais da Membrana , Staphylococcus aureus , Bacteriófagos/imunologia , Bacteriófagos/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Nucleotídeos Cíclicos/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Sistemas do Segundo Mensageiro , Staphylococcus aureus/citologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Staphylococcus aureus/virologia
5.
bioRxiv ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961437

RESUMO

The DNA double-strand breaks that initiate meiotic recombination are formed by topoisomerase relative Spo11, supported by conserved auxiliary factors. Because high-resolution structural data are lacking, many questions remain about the architecture of Spo11 and its partners and how they engage with DNA. We report cryo-EM structures at up to 3.3 Å resolution of DNA-bound core complexes of Saccharomyces cerevisiae Spo11 with Rec102, Rec104, and Ski8. In these structures, monomeric core complexes make extensive contacts with the DNA backbone and with the recessed 3'-OH and first 5' overhanging nucleotide, definitively establishing the molecular determinants of DNA end-binding specificity and providing insight into DNA cleavage preferences in vivo. The structures of individual subunits and their interfaces, supported by functional data in yeast, provide insight into the role of metal ions in DNA binding and uncover unexpected structural variation in homologs of the Top6BL component of the core complex.

6.
Adv Immunol ; 159: 1-32, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37996205

RESUMO

The metazoan cGAS-STING innate immunity pathway is triggered in response to cytoplasmic double-stranded DNA (dsDNA), thereby providing host defense against microbial pathogens. This pathway also impacts on autoimmune diseases, cellular senescence and anti-tumor immunity. The cGAS-STING pathway was also observed in the bacterial antiviral immune response, known as the cyclic oligonucleotide (CDN)-based anti-phage signaling system (CBASS). This review highlights a structure-based mechanistic perspective of recent advances in metazoan and bacterial cGAS-STING innate immune signaling by focusing on the cGAS sensor, cGAMP second messenger and STING adaptor components, thereby elucidating the specificity, activation, regulation and signal transduction features of the pathway.


Assuntos
Imunidade Inata , Nucleotidiltransferases , Humanos , Animais , Nucleotidiltransferases/metabolismo , Transdução de Sinais , DNA/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(45): e2310924120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903273

RESUMO

The Smc5/6 complex (Smc5/6) is important for genome replication and repair in eukaryotes. Its cellular functions are closely linked to the ATPase activity of the Smc5 and Smc6 subunits. This activity requires the dimerization of the motor domains of the two SMC subunits and is regulated by the six non-SMC subunits (Nse1 to Nse6). Among the NSEs, Nse5 and Nse6 form a stable subcomplex (Nse5-6) that dampens the ATPase activity of the complex. However, the underlying mechanisms and biological significance of this regulation remain unclear. Here, we address these issues using structural and functional studies. We determined cryo-EM structures of the yeast Smc5/6 derived from complexes consisting of either all eight subunits or a subset of five subunits. Both structures reveal that Nse5-6 associates with Smc6's motor domain and the adjacent coiled-coil segment, termed the neck region. Our structural analyses reveal that this binding is compatible with motor domain dimerization but results in dislodging the Nse4 subunit from the Smc6 neck. As the Nse4-Smc6 neck interaction favors motor domain engagement and thus ATPase activity, Nse6's competition with Nse4 can explain how Nse5-6 disfavors ATPase activity. Such regulation could in principle differentially affect Smc5/6-mediated processes depending on their needs of the complex's ATPase activity. Indeed, mutagenesis data in cells provide evidence that the Nse6-Smc6 neck interaction is important for the resolution of DNA repair intermediates but not for replication termination. Our results thus provide a molecular basis for how Nse5-6 modulates the ATPase activity and cellular functions of Smc5/6.


Assuntos
Proteínas Cromossômicas não Histona , Reparo do DNA , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo
9.
Cell Chem Biol ; 30(11): 1366-1376.e7, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37536341

RESUMO

Stimulator of interferon genes (STING) agonists are promising candidates for vaccine adjuvants and antitumor immune stimulants. The most potent natural agonist of STING, 2',3'-cyclic GMP-AMP (2',3'-cGAMP), is subject to nuclease-mediated inherent metabolic instability, thereby placing limits on its clinical efficacy. Here, we report on a new class of chemically synthesized sugar-modified analogs of 2',3'-cGAMP containing arabinose and xylose sugar derivatives that bind mouse and human STING alleles with high affinity. The co-crystal structures demonstrate that such analogs act as 2',3'-cGAMP mimetics that induce the "closed" conformation of human STING. These analogs show significant resistance to hydrolysis mediated by ENPP1 and increased stability in human serum, while retaining similar potency as 2',3'-cGAMP at inducing IFN-ß secretion from human THP1 cells. The arabinose- and xylose-modified 2',3'-cGAMP analogs open a new strategy for overcoming the inherent nuclease-mediated vulnerability of natural ribose cyclic nucleotides, with the additional benefit of high translational potential as cancer therapeutics and vaccine adjuvants.


Assuntos
Arabinose , Xilose , Humanos , Animais , Camundongos , Arabinose/farmacologia , Adjuvantes de Vacinas , Nucleotídeos Cíclicos/metabolismo
10.
Trends Immunol ; 44(6): 450-467, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37147228

RESUMO

Upon activation by double-stranded DNA (dsDNA), the cytosolic dsDNA sensor cyclic GMP-AMP synthase (cGAS) synthesizes the diffusible cyclic dinucleotide 2'3'-cGAMP (cyclic GMP-AMP), which subsequently binds to the adaptor STING, triggering a cascade of events leading to an inflammatory response. Recent studies have highlighted the role of 2'3'-cGAMP as an 'immunotransmitter' between cells, a process facilitated by gap junctions as well as by specialized membrane-spanning importer and exporter channels. This review highlights recent advances from a structural perspective of intercellular trafficking of 2'3'-cGAMP, with particular emphasis on the binding of importer SLC19A1 to 2'3'-cGAMP, as well as the significance of associated folate nutrients and antifolate therapeutics. This provides a path forward for structure-guided understanding of the transport cycle in immunology, as well as for candidate targeting approaches towards therapeutic intervention in inflammation.


Assuntos
Proteínas de Membrana , Nucleotidiltransferases , Humanos , Inflamação , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/metabolismo
11.
Nat Struct Mol Biol ; 30(3): 245-260, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36894694

RESUMO

The metazoan cGAMP-activated cGAS-STING innate immunity pathway is triggered in response to genomic instability and DNA damage, thereby providing host defense against microbial pathogens. This pathway also impacts on autophagy, cellular senescence and antitumor immunity, while its overactivation triggers autoimmune and inflammatory diseases. Metazoan cGAS generates cGAMP containing distinct combinations of 3'-5' and 2'-5' linkages, which target the adaptor protein STING and activate the innate immune response through a signaling cascade leading to upregulation of cytokine and interferon production. This Review highlights a structure-based mechanistic perspective of recent advances in cGAMP-activated cGAS-STING innate immune signaling by focusing on the cGAS sensor, cGAMP second messenger and STING adaptor components, thereby elucidating the specificity, activation, regulation and signal transduction features of the pathway. In addition, the Review addresses progress towards identification of inhibitors and activators targeting cGAS and STING, as well as strategies developed by pathogens to evade cGAS-STING immunity. Most importantly, it highlights cyclic nucleotide second messengers as ancient signaling molecules that elicit a potent innate immune response that originated in bacteria and evolved through evolutionary adaptation to metazoans.


Assuntos
Imunidade Inata , Nucleotídeos Cíclicos , Filogenia , Transdução de Sinais , Animais , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais/fisiologia
12.
Cell Res ; 33(1): 9-10, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36588116

Assuntos
RNA
14.
Mol Cell ; 82(24): 4591-4610, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36460008

RESUMO

Second-messenger-mediated signaling by cyclic oligonucleotides (cOs) composed of distinct base, ring size, and 3'-5'/2'-5' linkage combinations constitutes the initial trigger resulting in activation of signaling pathways that have an impact on immune-mediated antiviral defense against invading viruses and phages. Bacteria and archaea have evolved CRISPR, CBASS, Pycsar, and Thoeris surveillance complexes that involve cO-mediated activation of effectors resulting in antiviral defense through either targeted nuclease activity, effector oligomerization-mediated depletion of essential cellular metabolites or disruption of host cell membrane functions. Notably, antiviral defense capitalizes on an abortive infection mechanism, whereby infected cells die prior to completion of the phage replication cycle. In turn, phages have evolved small proteins that target and degrade/sequester cOs, thereby suppressing host immunity. This review presents a structure-based mechanistic perspective of recent advances in the field of cO-mediated antiviral defense, in particular highlighting the ancient evolutionary adaptation by metazoans of bacterial cell-autonomous innate immune mechanisms.


Assuntos
Bacteriófagos , Nucleotídeos Cíclicos , Nucleotídeos Cíclicos/metabolismo , Sistemas CRISPR-Cas , Antivirais , Archaea/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Bacteriófagos/genética , Bacteriófagos/metabolismo , Imunidade Inata
15.
Sci Rep ; 12(1): 18506, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323770

RESUMO

SARS coronavirus 2 (SARS-CoV-2) has caused an ongoing global pandemic with significant mortality and morbidity. At this time, the only FDA-approved therapeutic for COVID-19 is remdesivir, a broad-spectrum antiviral nucleoside analog. Efficacy is only moderate, and improved treatment strategies are urgently needed. To accomplish this goal, we devised a strategy to identify compounds that act synergistically with remdesivir in preventing SARS-CoV-2 replication. We conducted combinatorial high-throughput screening in the presence of submaximal remdesivir concentrations, using a human lung epithelial cell line infected with a clinical isolate of SARS-CoV-2. This identified 20 approved drugs that act synergistically with remdesivir, many with favorable pharmacokinetic and safety profiles. Strongest effects were observed with established antivirals, Hepatitis C virus nonstructural protein 5A (HCV NS5A) inhibitors velpatasvir and elbasvir. Combination with their partner drugs sofosbuvir and grazoprevir further increased efficacy, increasing remdesivir's apparent potency > 25-fold. We report that HCV NS5A inhibitors act on the SARS-CoV-2 exonuclease proofreader, providing a possible explanation for the synergy observed with nucleoside analog remdesivir. FDA-approved Hepatitis C therapeutics Epclusa® (velpatasvir/sofosbuvir) and Zepatier® (elbasvir/grazoprevir) could be further optimized to achieve potency and pharmacokinetic properties that support clinical evaluation in combination with remdesivir.


Assuntos
Tratamento Farmacológico da COVID-19 , Hepatite C , Humanos , SARS-CoV-2 , Antivirais/uso terapêutico , Sofosbuvir/farmacologia , Nucleosídeos/farmacologia , Monofosfato de Adenosina , Alanina , Hepacivirus , Hepatite C/tratamento farmacológico , Pulmão
17.
Cell Res ; 32(11): 965-966, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36050374
19.
Proc Natl Acad Sci U S A ; 119(23): e2202799119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35648833

RESUMO

Structural maintenance of chromosomes (SMC) complexes are essential for chromatin organization and functions throughout the cell cycle. The cohesin and condensin SMCs fold and tether DNA, while Smc5/6 directly promotes DNA replication and repair. The functions of SMCs rely on their abilities to engage DNA, but how Smc5/6 binds and translocates on DNA remains largely unknown. Here, we present a 3.8 Å cryogenic electron microscopy (cryo-EM) structure of DNA-bound Saccharomyces cerevisiae Smc5/6 complex containing five of its core subunits, including Smc5, Smc6, and the Nse1-3-4 subcomplex. Intricate interactions among these subunits support the formation of a clamp that encircles the DNA double helix. The positively charged inner surface of the clamp contacts DNA in a nonsequence-specific manner involving numerous DNA binding residues from four subunits. The DNA duplex is held up by Smc5 and 6 head regions and positioned between their coiled-coil arm regions, reflecting an engaged-head and open-arm configuration. The Nse3 subunit secures the DNA from above, while the hook-shaped Nse4 kleisin forms a scaffold connecting DNA and all other subunits. The Smc5/6 DNA clamp shares similarities with DNA-clamps formed by other SMCs but also exhibits differences that reflect its unique functions. Mapping cross-linking mass spectrometry data derived from DNA-free Smc5/6 to the DNA-bound Smc5/6 structure identifies multi-subunit conformational changes that enable DNA capture. Finally, mutational data from cells reveal distinct DNA binding contributions from each subunit to Smc5/6 chromatin association and cell fitness. In summary, our integrative study illuminates how a unique SMC complex engages DNA in supporting genome regulation.


Assuntos
Proteínas de Ciclo Celular , Replicação do DNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Microscopia Crioeletrônica , DNA Fúngico/química , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
20.
Mol Cell ; 82(6): 1186-1198.e6, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35202575

RESUMO

Epigenetic evolution occurs over million-year timescales in Cryptococcus neoformans and is mediated by DNMT5, the first maintenance type cytosine methyltransferase identified in the fungal or protist kingdoms, the first dependent on adenosine triphosphate (ATP), and the most hemimethyl-DNA-specific enzyme known. To understand these novel properties, we solved cryo-EM structures of CnDNMT5 in three states. These studies reveal an elaborate allosteric cascade in which hemimethylated DNA binding first activates the SNF2 ATPase domain by a large rigid body rotation while the target cytosine partially flips out of the DNA duplex. ATP binding then triggers striking structural reconfigurations of the methyltransferase catalytic pocket to enable cofactor binding, completion of base flipping, and catalysis. Bound unmethylated DNA does not open the catalytic pocket and is instead ejected upon ATP binding, driving high fidelity. This unprecedented chaperone-like, enzyme-remodeling role of the SNF2 ATPase domain illuminates how energy is used to enable faithful epigenetic memory.


Assuntos
Trifosfato de Adenosina , Epigenoma , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Citosina/química , DNA/genética , Metilação de DNA , Metiltransferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA