Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Epilepsia Open ; 8(4): 1523-1531, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37805809

RESUMO

OBJECTIVES: Growing evidence demonstrates a relationship between epilepsy and the circadian system. However, relatively little is known about circadian function in disease states, such as epilepsy. This study aimed to characterize brain and peripheral core circadian clock gene expression in rat models of genetic and acquired epilepsy. METHODS: For the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) study, we used 40 GAERS and 40 non-epileptic control (NEC) rats. For the kainic acid status epilepticus (KASE) study, we used 40 KASE and 40 sham rats. Rats were housed in a 7 am:7 pm light-dark cycle. Hypothalamus, hippocampus, liver, and small intestine samples were collected every 3 h throughout the light period. We then assessed core diurnal clock gene expression of per1, cry1, clock, and bmal1. RESULTS: In the GAERS rats, all tissues exhibited significant changes in clock gene expression (P < 0.05) when compared to NEC. In the KASE rats, there were fewer effects of the epileptic condition in the hypothalamus, hippocampus, or small intestine (P > 0.05) compared with shams. SIGNIFICANCE: These results indicate marked diurnal disruption to core circadian clock gene expression in rats with both generalized and focal chronic epilepsy. This could contribute to epileptic symptomology and implicate the circadian system as a viable target for future treatments.


Assuntos
Relógios Circadianos , Epilepsia Tipo Ausência , Ratos , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Encéfalo/metabolismo , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA