Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 546(1-2): 226-234, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29772284

RESUMO

Excipients are crucial components of most pharmaceutical formulations. In the case of a solid oral dosage formulation containing the salt form of a weakly ionizable drug, excipient selection is critical, as some excipients are known to cause salt disproportionation (conversion of salt to the free form). Therefore, robust formulation design necessitates an in-depth understanding of the factors impacting salt disproportionation during processing or storage as this can negatively impact product quality and performance. To date, there is an incomplete understanding of key excipient properties influencing salt disproportionation. Specifically, the potential roles of amorphous excipient glass transition temperature and excipient hygroscopicity, if any, on salt disproportionation are still not well understood. Furthermore, the relationship between the compression and the extent of salt disproportionation is an unknown factor. Herein, by utilizing various grades of polyvinylpyrrolidone (PVP), its copolymer, copovidone (PVPVA), and magnesium stearate, a systematic investigation of disproportionation was performed using pioglitazone HCl as a model salt of a weak base. It was observed that there was a poor correlation between excipient hygroscopicity and the rate and extent of disproportionation. However, powder compression into compacts enhanced the rate and extent of disproportionation. This work focused on disproportionation of the salt of a weak base, as basic drugs are more prevalent, however, salts of weak acids may have similar tendencies under relevant conditions. The knowledge gained from this study will help in understanding the role of various excipients with respect to salt disproportionation, paving the way for designing stable salt formulations.


Assuntos
Excipientes/química , Hipoglicemiantes/química , Povidona/química , Ácidos Esteáricos/química , Tiazolidinedionas/química , Água/química , Química Farmacêutica , Pioglitazona , Sais , Comprimidos
2.
Mol Pharm ; 15(1): 40-52, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29202237

RESUMO

Approximately 50% of solid oral dosage forms utilize salt forms of the active pharmaceutical ingredient (API). A major challenge with the salt form is its tendency to disproportionate to produce the un-ionized API form, decreasing the solubility and negatively impacting product stability. However, many of the factors dictating the tendency of a given salt to undergo disproportionation remain to be elucidated. In particular, the role of the solid-state properties of the salt on the disproportionation reaction is unknown. Herein, various solid forms of a model salt, miconazole mesylate (MM), were evaluated for their tendency to undergo disproportionation when mixed with basic excipients, namely tribasic sodium phosphate dodecahydrate (TSPd) and croscarmellose sodium (CCS), and exposed to moderate relative humidity storage conditions. It was observed that the rate and extent of salt disproportionation were significantly different for the various solid forms of MM. As expected, the amorphous salt was highly susceptible to disproportionation, while the dihydrate salt form was resistant to conversion under the conditions tested. In addition, binary excipient blends of amorphous and anhydrous forms exhibited a reduced extent of disproportionation at a higher relative humidity storage condition. This was due to the competitive kinetics between disproportionation to the free base and conversion to the dihydrate salt form. The results of this study provide important insights into the impact of solid-state form on susceptibility to disproportionation that can be utilized for rationally designing robust pharmaceutical formulations.


Assuntos
Excipientes/química , Mesilatos/química , Miconazol/química , Carboximetilcelulose Sódica/química , Composição de Medicamentos , Estabilidade de Medicamentos , Solubilidade
3.
Int J Pharm ; 532(1): 166-176, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-28847668

RESUMO

Understanding the phase behavior of crystal forms is essential in drug formulation development, as physical stability of the active pharmaceutical ingredient (API) is critical to achieving the desired bioavailability. Solvents greatly impact the physical stability of crystalline solids, resulting in a variety of well-known phase transitions, such as hydrate/solvate formation. However, solvent incorporation may also result in the formation of a less-known crystalline solid solutions (CSSs). The identification and characterization of CSSs and their effect on API physicochemical properties have not been investigated. This is the first reported instance of a CSS for an API. An exhaustive study of the phase behavior of the enantiotropically related polymorphs, I and II, of Benzocaine in water and ethanol revealed that Form I formed a CSS with water below 294.5K. Construction of the phase diagrams of Forms I and II in water and ethanol revealed that CSS formation significantly decreased the phase transition temperature between Forms I and II in water. This change resulted from the increased disorder in the lattice of Form I due to the presence of water. This work demonstrates the importance of understanding the formation of CSSs on the thermodynamic behavior of crystalline pharmaceutical solids.


Assuntos
Benzocaína/química , Cristalização , Etanol/química , Transição de Fase , Solubilidade , Soluções , Termodinâmica , Temperatura de Transição , Água/química
4.
Carbohydr Polym ; 155: 362-371, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27702523

RESUMO

The ability to engineer biocompatible polymers with controllable properties is highly desirable. One such approach is to cross-link carbohydrate polymers using ionotropic gelation (IG). Previous studies have investigated the effect of curing time on alginate cross-linking. Herein, we discuss a novel study detailing the effect of IG residence time (IGRT) on the cross-linking of alginate with calcium ions (Ca2+) along with water migration (syneresis) and their subsequent impact on the pharmaceutical properties of alginate particles. IGRT was shown to have a significant effect on particle size, porosity, density, mechanical strength and swelling of calcium alginate particles as well as drug release mechanism. Furthermore, we describe a novel application of electron dispersive spectroscopy (EDS), in conjunction with Fourier Transform- infra red (FT-IR) spectroscopy, to analyze and monitor the changes in Ca2+ concentration during cross-linking. A simple procedure to determine the concentration and distribution of the surface and internal Ca2+ involved in alginate cross-linking was successfully developed.

5.
Biochim Biophys Acta ; 1831(12): 1714-20, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23973798

RESUMO

Paraoxonase 1 (PON1) is an HDL-associated enzyme and exhibits anti-inflammatory, anti-diabetic, and anti-atherogenic properties. Association of PON1 to HDL particles increases the stability and activity of PON1 and is important for the normal functioning of the enzyme. HDL particles are made up of lipid and protein constituents and apolipoprotein A-I (apoA-I) is a principal protein constituent of HDL that facilitates various biological activities of HDL. In many disease conditions the oxidized phospholipid (Ox-PL) content of HDL is found to be increased and an inverse correlation between the activity of PON1 and oxidation of the HDL is observed. However, the molecular details of the inhibitory action of the Ox-PL-containing HDL on the function of PON1 are not clear yet. In this study we have assembled reconstituted HDL (rHDL) particles with and without Ox-PL and compared their effect on the structure and function of (13)C-labeled recombinant PON1 ((13)C-rPON1) by employing attenuated total reflectance Fourier transformed infrared (ATR-FTIR) spectroscopy and enzymatic assay. Our results show that the presence of the Ox-PL in the rHDL particles alters the structure of rPON1 and decreases its lactonase activity.


Assuntos
Apolipoproteína A-I/química , Arildialquilfosfatase/química , Lipoproteínas HDL/química , Apolipoproteína A-I/metabolismo , Arildialquilfosfatase/genética , Arildialquilfosfatase/metabolismo , Isótopos de Carbono , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Cinética , Lipoproteínas HDL/metabolismo , Modelos Moleculares , Oxirredução , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Biochim Biophys Acta ; 1821(9): 1200-10, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22634518

RESUMO

High density lipoprotein (HDL) particles are made up of lipid and protein constituents and apolipoprotein A-I (apoA-I) is a principal protein component that facilitates various biological activities of HDL particles. Increase in Ox-PL content of HDL particles makes them 'dysfunctional' and such modified HDL particles not only lose their athero-protective properties but also acquire pro-atherogenic and pro-inflammatory functions. The details of Ox-PL-induced alteration in the molecular properties of HDL particles are not clear. Paraoxonase 1 (PON1) is an HDL-associated enzyme that possesses anti-inflammatory and anti-atherogenic properties; and many of the athero-protective functions of HDL are attributed to the associated PON1. In this study we have characterized the physicochemical properties of reconstituted HDL (rHDL) particles containing varying amounts of Ox-PL and have compared their PON1 stimulation capacity. Our results show that increased Ox-PL content (a) modifies the physicochemical properties of the lipid domain of the rHDL particles, (b) decreases the stability and alters the conformation as well as orientation of apoA-I molecules on the rHDL particles, and (c) decreases the PON1 stimulation capacity of the rHDL particles. Our data indicate that the presence of Ox-PLs destabilizes the structure of the HDL particles and modifies their function.


Assuntos
Arildialquilfosfatase/química , Lipoproteínas HDL/química , Fosfolipídeos/química , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Arildialquilfosfatase/metabolismo , Aterosclerose/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Oxirredução , Fosfolipídeos/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA