Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Anat ; 243(2): 204-222, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35292986

RESUMO

The precise specification of cellular fate is thought to ensure the production of the correct number of neurons within a population. Programmed cell death may be an additional mechanism controlling cell number, believed to refine the proper ratio of pre- to post-synaptic neurons for a given species. Here, we consider the size of three different neuronal populations in the rod pathway of the mouse retina: rod photoreceptors, rod bipolar cells, and AII amacrine cells. Across a collection of 28 different strains of mice, large variation in the numbers of all three cell types is present. The variation in their numbers is not correlated, so that the ratio of rods to rod bipolar cells, as well as rod bipolar cells to AII amacrine cells, varies as well. Establishing connectivity between such variable pre- and post-synaptic populations relies upon plasticity that modulates process outgrowth and morphological differentiation, which we explore experimentally for both rod bipolar and AII amacrine cells in a mouse retina with elevated numbers of each cell type. While both rod bipolar dendritic and axonal arbors, along with AII lobular arbors, modulate their areal size in relation to local homotypic cell densities, the dendritic appendages of the AII amacrine cells do not. Rather, these processes exhibit a different form of plasticity, regulating the branching density of their overlapping arbors. Each form of plasticity should ensure uniformity in retinal coverage in the presence of the independent specification of afferent and target cell number.


Assuntos
Dendritos , Retina , Camundongos , Animais , Dendritos/fisiologia , Células Amácrinas/fisiologia , Axônios
2.
Nucleic Acids Res ; 50(19): 11374-11386, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36300637

RESUMO

Breaking codon degeneracy for the introduction of non-canonical amino acids offers many opportunities in synthetic biology. Yet, despite the existence of 64 codons, the code has only been expanded to 25 amino acids in vitro. A limiting factor could be the over-reliance on synthetic tRNAs which lack the post-transcriptional modifications that improve translational fidelity. To determine whether modified, wild-type tRNA could improve sense codon reassignment, we developed a new fluorous method for tRNA capture and applied it to the isolation of roughly half of the Escherichia coli tRNA isoacceptors. We then performed codon competition experiments between the five captured wild-type leucyl-tRNAs and their synthetic counterparts, revealing a strong preference for wild-type tRNA in an in vitro translation system. Finally, we compared the ability of wild-type and synthetic leucyl-tRNA to break the degeneracy of the leucine codon box, showing that only captured wild-type tRNAs are discriminated with enough fidelity to accurately split the leucine codon box for the encoding of three separate amino acids. Wild-type tRNAs are therefore enabling reagents for maximizing the reassignment potential of the genetic code.


Assuntos
Código Genético , RNA de Transferência , Leucina/genética , Códon/genética , Códon/metabolismo , RNA de Transferência/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biossíntese de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA