Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Oncotarget ; 8(49): 86799-86815, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29156836

RESUMO

BRCA1 is an important player in the DNA damage response signaling, and its deficiency results in genomic instability. A complete loss or significantly reduced BRCA1 protein expression is often found in sporadic breast cancer cases despite the absence of genetic or epigenetic aberrations, suggesting the existence of other regulatory mechanisms controlling BRCA1 protein expression. Herein, we demonstrate that Fyn-related kinase (Frk)/Rak plays an important role in maintaining genomic stability, possibly in part through positively regulating BRCA1 protein stability and function via tyrosine phosphorylation on BRCA1 Tyr1552. In addition, Rak deficiency confers cellular sensitivity to DNA damaging agents and poly(ADP-ribose) polymerase (PARP) inhibitors. Overall, our findings highlight a critical role of Rak in the maintenance of genomic stability, at least in part, through protecting BRCA1 and provide novel treatment strategies for patients with breast tumors lacking Rak.

3.
PLoS One ; 12(2): e0171616, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28196140

RESUMO

Receptor Tyrosine Kinase (RTK) signaling plays a major role in tumorigenesis and normal development. Sprouty2 (Spry2) attenuates RTK signaling and inhibits processes such as angiogenesis, cell proliferation, migration and survival, which are all upregulated in tumors. Indeed in cancers of the liver, lung, prostate and breast, Spry2 protein levels are markedly decreased correlating with poor patient prognosis and shorter survival. Thus, it is important to understand how expression of Spry2 is regulated. While prior studies have focused on the post-translation regulation of Spry2, very few studies have focused on the transcriptional regulation of SPRY2 gene. Here, we demonstrate that in the human hepatoma cell line, Hep3B, the transcription of SPRY2 is inhibited by the transcription regulating hypoxia inducible factors (HIFs). HIFs are composed of an oxygen regulated alpha subunit (HIF1α or HIF2α) and a beta subunit (HIF1ß). Intriguingly, silencing of HIF1α and HIF2α elevates SPRY2 mRNA and protein levels suggesting HIFs reduce the transcription of the SPRY2 promoter. In silico analysis identified ten hypoxia response elements (HREs) in the proximal promoter and first intron of SPRY2. Using chromatin immunoprecipitation (ChIP), we show that HIF1α/2α bind near the putative HREs in the proximal promoter and intron of SPRY2. Our studies demonstrated that not only is the SPRY2 promoter methylated, but silencing HIF1α/2α reduced the methylation. ChIP assays also showed DNA methyltransferase1 (DNMT1) binding to the proximal promoter and first intron of SPRY2 and silencing HIF1α/2α decreased this association. Additionally, silencing of DNMT1 mimicked the HIF1α/2α silencing-mediated increase in SPRY2 mRNA and protein. While simultaneous silencing of HIF1α/2α and DNMT1 increased SPRY2 mRNA a little more, the increase was not additive suggesting a common mechanism by which DNMT1 and HIF1α/2α regulate SPRY2 transcription. Together these data suggest that the transcription of SPRY2 is inhibited by HIFs, in part, via DNMT1- mediated methylation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Ativação Transcricional , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Hipóxia Celular , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Interferência de RNA , Elementos de Resposta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Exp Cell Res ; 349(1): 139-151, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27737732

RESUMO

Earlier studies from our laboratory have identified Anacardic acid (AA) as a potent inhibitor of gelatinases (MMP-2 and 9), which are over-expressed in a wide variety of cancers (Omanakuttan et al., 2012). Disruption of the finely tuned matrix metalloproteinase (MMP) activator/inhibitor balance plays a decisive role in determining the fate of the cell. The present study demonstrates for the first time, that in addition to regulating the expression as well as activity of gelatinases, AA also inhibits the expression of its endogenous activators like MMP-14 and Extracellular Matrix MetalloProteinase Inducer (EMMPRIN) and induces the expression of its endogenous inhibitor, REversion-inducing Cysteine-rich protein with Kazal motifs (RECK). In addition to modulating gelatinases, AA also inhibits the expression of various components of the Epidermal Growth Factor (EGF) pathway like EGF, Protein Kinase B (Akt) and Mitogen-activated protein kinases (MAPK). Furthermore, AA also activates the expression of Sprouty 2 (Spry2), a negative regulator of EGF pathway, and silencing Spry2 results in up-regulation of expression of gelatinases as well as MMP-14. The present study thus elucidates a novel mechanism of action of AA and provides a strong basis for utilizing this molecule as a template for cancer therapeutics.


Assuntos
Ácidos Anacárdicos/farmacologia , Basigina/metabolismo , Proteínas Ligadas por GPI/metabolismo , Gelatinases/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/metabolismo , Gelatinases/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Modelos Biológicos , Invasividade Neoplásica , Transdução de Sinais/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-2/metabolismo
5.
J Biol Chem ; 291(32): 16787-801, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27281823

RESUMO

The α-subunits of hypoxia-inducible factors (HIF1α and HIF2α) promote transcription of genes that regulate glycolysis and cell survival and growth. Sprouty2 (Spry2) is a modulator of receptor tyrosine kinase signaling and inhibits cell proliferation by a number of different mechanisms. Because of the seemingly opposite actions of HIFα subunits and Spry2 on cellular processes, we investigated whether Spry2 regulates the levels of HIF1α and HIF2α proteins. In cell lines from different types of tumors in which the decreased protein levels of Spry2 have been associated with poor prognosis, silencing of Spry2 elevated HIF1α protein levels. Increases in HIF1α and HIF2α protein levels due to silencing of Spry2 also up-regulated HIFα target genes. Using HIF1α as a prototype, we show that Spry2 decreases HIF1α stability and enhances the ubiquitylation of HIF1α by a von Hippel-Lindau protein (pVHL)-dependent mechanism. Spry2 also exists in a complex with HIF1α. Because Spry2 can also associate with pVHL, using a mutant form of Spry2 (3P/3A-Spry2) that binds HIF1α, but not pVHL, we show that WT-Spry2, but not the 3P/3A-Spry2 decreases HIF1α protein levels. In accordance, expression of WT-Spry2, but not 3P/3A-Spry2 results in a decrease in HIF1α-sensitive glucose uptake. Together our data suggest that Spry2 acts as a scaffold to bring more pVHL/associated E3 ligase in proximity of HIF1α and increase its ubiquitylation and degradation. This represents a novel action for Spry2 in modulating biological processes regulated by HIFα subunits.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Transcrição Gênica , Ubiquitinação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Tumoral , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Estabilidade Proteica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
6.
Cancer Res ; 75(20): 4372-83, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26282169

RESUMO

Non-small cell lung cancers (NSCLC) that have developed resistance to EGF receptor (EGFR) tyrosine kinase inhibitor (TKI), including gefitinib and erlotinib, are clinically linked to an epithelial-to-mesenchymal transition (EMT) phenotype. Here, we examined whether modulating EMT maintains the responsiveness of EGFR-mutated NSCLCs to EGFR TKI therapy. Using human NSCLC cell lines harboring mutated EGFR and a transgenic mouse model of lung cancer driven by mutant EGFR (EGFR-Del19-T790M), we demonstrate that EGFR inhibition induces TGFß secretion followed by SMAD pathway activation, an event that promotes EMT. Chronic exposure of EGFR-mutated NSCLC cells to TGFß was sufficient to induce EMT and resistance to EGFR TKI treatment. Furthermore, NSCLC HCC4006 cells with acquired resistance to gefitinib were characterized by a mesenchymal phenotype and displayed a higher prevalence of the EGFR T790M mutated allele. Notably, combined inhibition of EGFR and the TGFß receptor in HCC4006 cells prevented EMT but was not sufficient to prevent acquired gefitinib resistance because of an increased emergence of the EGFR T790M allele compared with cells treated with gefitinib alone. Conversely, another independent NSCLC cell line, PC9, reproducibly developed EGFR T790M mutations as the primary mechanism underlying EGFR TKI resistance, even though the prevalence of the mutant allele was lower than that in HCC4006 cells. Thus, our findings underscore heterogeneity within NSCLC cells lines harboring EGFR kinase domain mutations that give rise to divergent resistance mechanisms in response to treatment and anticipate the complexity of EMT suppression as a therapeutic strategy.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Análise por Conglomerados , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Gefitinibe , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Fenótipo , Quinazolinas/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
7.
PLoS One ; 10(3): e0120693, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25822989

RESUMO

Both the development and relief of stress-related psychiatric conditions such as major depression (MD) and post-traumatic stress disorder (PTSD) have been linked to neuroplastic changes in the brain. One such change involves the birth of new neurons (neurogenesis), which occurs throughout adulthood within discrete areas of the mammalian brain, including the dorsal hippocampus (HIP). Stress can trigger MD and PTSD in humans, and there is considerable evidence that it can decrease HIP neurogenesis in laboratory animals. In contrast, antidepressant treatments increase HIP neurogenesis, and their efficacy is eliminated by ablation of this process. These findings have led to the working hypothesis that HIP neurogenesis serves as a biomarker of neuroplasticity and stress resistance. Here we report that local alterations in the expression of Sprouty2 (SPRY2), an intracellular inhibitor of growth factor function, produces profound effects on both HIP neurogenesis and behaviors that reflect sensitivity to stressors. Viral vector-mediated disruption of endogenous Sprouty2 function (via a dominant negative construct) within the dorsal HIP of adult rats stimulates neurogenesis and produces signs of stress resilience including enhanced extinction of conditioned fear. Conversely, viral vector-mediated elevation of SPRY2 expression intensifies the behavioral consequences of stress. Studies of these manipulations in HIP primary cultures indicate that SPRY2 negatively regulates fibroblast growth factor-2 (FGF2), which has been previously shown to produce antidepressant- and anxiolytic-like effects via actions in the HIP. Our findings strengthen the relationship between HIP plasticity and stress responsiveness, and identify a specific intracellular pathway that could be targeted to study and treat stress-related disorders.


Assuntos
Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Estresse Psicológico/metabolismo , Animais , Depressão/metabolismo , Depressão/fisiopatologia , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/fisiopatologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Hipocampo/fisiopatologia , Masculino , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Estresse Psicológico/fisiopatologia
8.
Mol Pharmacol ; 85(2): 357-67, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24307699

RESUMO

Cardiomyocyte apoptosis contributes toward the loss of muscle mass in myocardial pathologies. Previous reports have implicated type I cAMP-dependent protein kinase (PKA) and p90 ribosomal S6 kinase (RSK) in cardiomyocyte apoptosis. However, the precise mechanisms and the isoform of RSK involved in this process remain undefined. Using adult rat ventricular myocytes and mouse-derived cardiac HL-1 cardiomyocytes, we demonstrate that hypoxia/reoxygenation (H/R)-induced apoptosis is accompanied by a decrease in the type I PKA regulatory subunit (PKARIα) and activation of RSK1. As previously described by us for other cell types, in cardiomyocytes, inactive RSK1 also interacts with PKARIα, whereas the active RSK1 interacts with the catalytic subunit of PKA. Additionally, small interfering (siRNA)-mediated silencing of PKARIα or disrupting the RSK1/PKARIα interactions with a small, cell-permeable peptide activates RSK1 and recapitulates the H/R-induced apoptosis. Inhibition of RSK1 or siRNA-mediated silencing of RSK1 attenuates H/R-induced apoptosis, demonstrating the role of RSK1 in cardiomyocyte apoptosis. Furthermore, silencing of RSK1 decreases the H/R-induced phosphorylation of sodium-hydrogen exchanger 1 (NHE1), and inhibition of NHE1 with 5'-N-ethyl-N-isopropyl-amiloride blocks H/R induced apoptosis, indicating the involvement of NHE1 in apoptosis. Overall, our findings demonstrate that H/R-mediated decrease in PKARIα protein levels leads to activation of RSK1, which via phosphorylation of NHE1 induces cardiomyocyte apoptosis.


Assuntos
Apoptose , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/fisiologia , Miócitos Cardíacos/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/fisiologia , Animais , Proteínas de Transporte de Cátions/metabolismo , Células Cultivadas , Camundongos , Miócitos Cardíacos/enzimologia , Fosforilação , Ratos , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/metabolismo
9.
Mol Biol Cell ; 23(3): 503-15, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22130794

RESUMO

Ribosomal S6 kinase 1 (RSK1) belongs to a family of proteins with two kinase domains. Following activation in the cytoplasm by extracellular signal-regulated kinases (ERK1/2), it mediates the cell-proliferative, cell-growth, and survival-promoting actions of a number of growth factors and other agonists. These diverse biological actions of RSK1 involve regulation of both cytoplasmic and nuclear events. However, the mechanisms that permit nuclear accumulation of RSK1 remain unknown. Here, we show that phosphorylation of RSK1 on S221 is important for its dissociation from the type Iα regulatory subunit of protein kinase A (PKA) in the cytoplasm and that RSK1 contains a bipartite nuclear localization sequence that is necessary for its nuclear entry. Once inside, the active RSK1 is retained in the nucleus via its interactions with PKA catalytic subunit and AKAP95. Mutations of RSK1 that do not affect its activity but disrupt its entry into the nucleus or expression of AKAP95 forms that do not enter the nucleus inhibit the ability of active RSK1 to stimulate DNA synthesis. Our findings identify novel mechanisms by which active RSK1 accumulates in the nucleus and also provide new insights into how AKAP95 orchestrates cell cycle progression.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Ciclo Celular/fisiologia , Linhagem Celular , Núcleo Celular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Camundongos , Fosforilação , Ratos , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Transfecção
10.
J Biol Chem ; 286(49): 42027-42036, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22006925

RESUMO

Sprouty (Spry) proteins modulate the actions of receptor tyrosine kinases during development and tumorigenesis. Decreases in cellular levels of Spry, especially Sprouty2 (Spry2), have been implicated in the growth and progression of tumors of the breast, prostate, lung, and liver. During development and tumor growth, cells experience hypoxia. Therefore, we investigated how hypoxia modulates the levels of Spry proteins. Hypoxia elevated the levels of all four expressed Spry isoforms in HeLa cells. Amounts of endogenous Spry2 in LS147T and HEP3B cells were also elevated by hypoxia. Using Spry2 as a prototype, we demonstrate that silencing and expression of prolyl hydroxylase domain proteins (PHD1-3) increase and decrease, respectively, the cellular content of Spry2. Spry2 also preferentially interacted with PHD1-3 and von Hippel-Lindau protein (pVHL) during normoxia but not in hypoxia. Additionally, Spry2 is hydroxylated on Pro residues 18, 144, and 160, and substitution of these residues with Ala enhanced stability of Spry2 and abrogated its interactions with pVHL. Silencing of pVHL increased levels of Spry2 by decreasing its ubiquitylation and degradation and thereby augmented the ability of Spry2 to inhibit FGF-elicited activation of ERK1/2. Thus, prolyl hydroxylase mediated hydroxylation and subsequent pVHL-elicited ubiquitylation of Spry2 target it for degradation and, consequently, provide a novel mechanism of regulating growth factor signaling.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Inativação Gênica , Células HEK293 , Células HeLa , Humanos , Hipóxia , Proteínas de Membrana , Fosforilação , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Ubiquitina/química , Ubiquitina-Proteína Ligases/metabolismo
11.
Am J Physiol Heart Circ Physiol ; 300(2): H459-67, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21076020

RESUMO

Angiogenesis is regulated by signals received by receptor tyrosine kinases such as vascular endothelial growth factor receptors. Mammalian Sprouty (Spry) proteins are known to function by specifically antagonizing the activation of the mitogen-activated protein kinase signaling pathway by receptor tyrosine kinases, a pathway known to promote angiogenesis. To examine the role of Spry2 in the regulation of angiogenesis during wound repair, we used a model of murine dermal wound healing. Full-thickness excisional wounds (3 mm) were made on the dorsum of anesthetized adult female FVB mice. Samples were harvested at multiple time points postwounding and analyzed using real-time RT-PCR, Western blot analysis, and immunofluorescent histochemistry. Spry2 mRNA and protein levels in the wound bed increased significantly during the resolving phases of healing, coincident with the onset of vascular regression in this wound model. In another experiment, intracellular levels of Spry2 or its dominant-negative mutant (Y55F) were elevated by a topical application to the wounds of controlled-release gel containing cell permeable, transactivator of transcription-tagged Spry2, Spry2Y55F, or green fluorescent protein (as control). Wound samples were analyzed for vascularity using CD31 immunofluorescent histochemistry as well as for total and phospho-Erk1/2 protein content. The treatment of wounds with Spry2 resulted in a significant decrease in vascularity and a reduced abundance of phospho-Erk1/2 compared with wounds treated with the green fluorescent protein control. In contrast, the wounds treated with the dominant-negative Spry2Y55F exhibited a moderate increase in vascularity and elevated phospho-Erk1/2 content. These results indicate that endogenous Spry2 functions to downregulate angiogenesis in the healing murine skin wound, potentially by inhibiting the mitogen-activated protein kinase signaling pathway.


Assuntos
Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Cicatrização/genética , Cicatrização/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Western Blotting , Permeabilidade da Membrana Celular , Células Cultivadas , Células Endoteliais/fisiologia , Feminino , Imunofluorescência , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases , RNA Mensageiro/biossíntese , RNA Mensageiro/isolamento & purificação , Proteínas Recombinantes/farmacologia , Fluxo Sanguíneo Regional/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/genética , Ferimentos e Lesões/fisiopatologia
12.
J Biol Chem ; 285(10): 6970-9, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20048145

RESUMO

Previously we showed that the inactive form of p90 ribosomal S6 kinase 1 (RSK1) interacts with the regulatory subunit, PKARIalpha, of protein kinase A (PKA), whereas the active RSK1 interacts with the catalytic subunit (PKAc) of PKA. Herein, we demonstrate that the N-terminal kinase domain (NTK) of RSK1 is necessary for interactions with PKARIalpha. Substitution of the activation loop phosphorylation site (Ser-221) in the NTK with the negatively charged Asp residue abrogated the association between RSK1 and PKARIalpha. This explains the lack of an interaction between active RSK1 and PKARIalpha. Full-length RSK1 bound to PKARIalpha with an affinity of 0.8 nm. The NTK domain of RSK1 competed with PKAc for binding to the pseudosubstrate region (amino acids 93-99) of PKARIalpha. Overexpressed RSK1 dissociated PKAc from PKARIalpha, increasing PKAc activity, whereas silencing of RSK1 increased PKAc/PKARIalpha interactions and decreased PKAc activity. Unlike PKAc, which requires Arg-95 and -96 in the pseudosubstrate region of PKARIalpha for their interactions, RSK1/PKARIalpha association requires all four Arg residues (Arg-93-96) in the pseudosubstrate site of PKARIalpha. A peptide (Wt-PS) corresponding to residues 91-99 of PKARIalpha competed for binding of RSK1 with PKARIalpha both in vitro and in intact cells. Furthermore, peptide Wt-PS (but not control peptide Mut-PS), by dissociating RSK1 from PKARIalpha, activated RSK1 in the absence of any growth factors and protected cells from apoptosis. Thus, by competing for binding to the pseudosubstrate region of PKARIalpha, RSK1 regulates PKAc activity in a cAMP-independent manner, and PKARIalpha by associating with RSK1 regulates its activation and its biological functions.


Assuntos
Domínio Catalítico , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética
13.
J Biol Chem ; 285(1): 255-64, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19864419

RESUMO

Sprouty (Spry) proteins are important regulators of receptor tyrosine kinase signaling in development and disease. Alterations in cellular Spry content have been associated with certain forms of cancers and also in cardiovascular diseases. Thus, understanding the mechanisms that regulate cellular Spry levels are important. Herein, we demonstrate that Spry1 and Spry2, but not Spry3 or Spry4, associate with the HECT domain family E3 ubiquitin ligase, Nedd4. The Spry2/Nedd4 association involves the WW domains of Nedd4 and requires phosphorylation of the Mnk2 kinase sites, Ser(112) and Ser(121), on Spry2. The phospho-Ser(112/121) region on Spry2 that binds WW domains of Nedd4 is a novel non-canonical WW domain binding region that does not contain Pro residues after phospho-Ser. Endogenous and overexpressed Nedd4 polyubiquitinate Spry2 via Lys(48) on ubiquitin and decrease its stability. Silencing of endogenous Nedd4 increased the cellular Spry2 content and attenuated fibroblast growth factor-elicited ERK1/2 activation that was reversed when elevations in Spry2 levels were prevented by Spry2-specific small interfering RNA. Mnk2 silencing decreased Spry2-Nedd4 interactions and also augmented the ability of Spry2 to inhibit fibroblast growth factor signaling. This is the first report demonstrating the regulation of cellular Spry content and its ability to modulate receptor tyrosine kinase signaling by a HECT domain-containing E3 ubiquitin ligase.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Animais , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Inativação Gênica , Humanos , Proteínas de Membrana , Ubiquitina-Proteína Ligases Nedd4 , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Ratos , Transdução de Sinais
14.
J Biol Chem ; 284(48): 33070-8, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19808666

RESUMO

Previously, we reported that the catalytic subunit of cAMP-dependent protein kinase (PKAc) binds to the active p90 ribosomal S6 kinase 1 (RSK1) (Chaturvedi, D., Poppleton, H. M., Stringfield, T., Barbier, A., and Patel, T. B. (2006) Mol. Cell. Biol. 26, 4586-4600). Herein, by overexpressing hemagglutinin-tagged RSK1 fragments in HeLa cells we have identified the region of RSK1 that is responsible for the interaction with PKAc. PKAc bound to the last 13 amino acids of RSK1, which overlaps the Erk1/2 docking site. This interaction between PKAc and RSK1 required the phosphorylation of Ser-732 in the C terminus of RSK1. Depending upon its phosphorylation status, RSK1 switched interactions between Erk1/2 and PKAc. In addition, a peptide corresponding to the last 13 amino acids of RSK1 with substitution of Ser-732 with Glu (peptide E), but not Ala (peptide A), decreased interactions between endogenous active RSK1 and PKAc. RSK1 attenuated the ability of cAMP to activate PKA in vitro and this modulation was abrogated by peptide E, but not by peptide A. Similarly, in intact cells, cAMP-mediated phosphorylation of Bcl-xL/Bcl-2-associated death promoter on Ser-115, the PKA site, was reduced when RSK1 was activated by epidermal growth factor, and this effect was blocked by peptide E, but not by peptide A. These findings demonstrate that interactions between endogenous RSK1 and PKAc in intact cells regulate the ability of cAMP to activate PKA and identify a novel mechanism by which PKA activity is regulated by the Erk1/2 pathway.


Assuntos
Aminoácidos/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Aminoácidos/genética , Animais , Sítios de Ligação , Western Blotting , Domínio Catalítico , Linhagem Celular , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Ativação Enzimática/efeitos dos fármacos , Células HeLa , Humanos , Imunoprecipitação , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação , Fosforilação , Ligação Proteica , Interferência de RNA , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Serina/genética , Serina/metabolismo , Treonina/genética , Treonina/metabolismo , Transfecção
15.
Mol Pharmacol ; 76(4): 679-91, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19570949

RESUMO

Receptor tyrosine kinase (RTK) signaling is spatially and temporally regulated by a number of positive and negative regulatory mechanisms. These regulatory mechanisms control the amplitude and duration of the signals initiated at the cell surface to have a normal or aberrant biological outcome in development and disease, respectively. In the past decade, the Sprouty (Spry) family of proteins has been identified as modulators of RTK signaling in normal development and disease. This review summarizes recent advances concerning the biological activities modulated by Spry family proteins, their interactions with signaling proteins, and their involvement in cardiovascular diseases and cancer. The diversity of mechanisms in the regulation of Spry expression and activity in cell systems emphasizes the crucial role of Spry proteins in development and growth across the animal kingdom.


Assuntos
Proteínas/fisiologia , Animais , Doença , Humanos , Ligação Proteica , Proteínas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia
16.
J Biol Chem ; 284(35): 23670-81, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19570980

RESUMO

Previously, we showed that interactions between p90(RSK1) (RSK1) and the subunits of type I protein kinase A (PKA) regulate the activity of PKA and cellular distribution of active RSK1 (Chaturvedi, D., Poppleton, H. M., Stringfield, T., Barbier, A., and Patel, T. B. (2006) Mol. Cell Biol. 26, 4586-4600). Here we examined the role of the PKARIalpha subunit of PKA in regulating RSK1 activation and cell survival. In mouse lung fibroblasts, silencing of the PKARIalpha increased the phosphorylation and activation of RSK1, but not of RSK2 and RSK3, in the absence of any stimulation. Silencing of PKARIalpha also decreased the nuclear accumulation of active RSK1 and increased its cytoplasmic content. The increased activation of RSK1 in the absence of any agonist and changes in its subcellular redistribution resulted in increased phosphorylation of its cytoplasmic substrate BAD and increased cell survival. The activity of PKA and phosphorylation of BAD (Ser-155) were also enhanced when PKARIalpha was silenced, and this, in part, contributed to increased cell survival in unstimulated cells. Furthermore, we show that RSK1, PKA subunits, D-AKAP1, and protein phosphatase 2A catalytic subunit (PP2Ac) exist in a complex, and dissociation of RSK1 from D-AKAP1 by either silencing of PKARIalpha, depletion of D-AKAP1, or by using a peptide that competes with PKARIalpha for binding to AKAPs, decreased the amount of PP2Ac in the RSK1 complex. We also demonstrate that PP2Ac is one of the phosphatases that dephosphorylates RSK, but not ERK1/2. Thus, in unstimulated cells, the increased phosphorylation and activation of RSK1 after silencing of PKARIalpha or depletion of D-AKAP1 are due to decreased association of PP2Ac in the RSK1 complex.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidades Proteicas/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , Camundongos , Fosforilação , Subunidades Proteicas/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteína de Morte Celular Associada a bcl/genética , Proteína de Morte Celular Associada a bcl/metabolismo
17.
J Biol Chem ; 283(6): 3181-3190, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18070883

RESUMO

Sprouty (SPRY) proteins modulate receptor-tyrosine kinase signaling and, thereby, regulate cell migration and proliferation. Here, we have examined the role of endogenous human SPRY2 (hSPRY2) in the regulation of cellular apoptosis. Small inhibitory RNA-mediated silencing of hSPRY2 abolished the anti-apoptotic action of serum in adrenal cortex adenocarcinoma (SW13) cells. Silencing of hSPRY2 decreased serum- or epidermal growth factor (EGF)-elicited activation of AKT and ERK1/2 and reduced the levels of EGF receptor. Silencing of hSPRY2 also inhibited serum-induced activation of p90RSK and decreased phosphorylation of pro-apoptotic protein BAD (BCL2-antagonist of cell death) by p90RSK. Inhibiting both the ERK1/2 and AKT pathways abolished the ability of serum to protect against apoptosis, mimicking the effects of silencing hSPRY2. Serum transactivated the EGF receptor (EGFR), and inhibition of the EGFR by a neutralizing antibody attenuated the anti-apoptotic actions of serum. Consistent with the role of EGFR and perhaps other growth factor receptors in the anti-apoptotic actions of serum, the tyrosine kinase binding domain of c-Cbl (Cbl-TKB) protected against down-regulation of the growth factor receptors such as EGFR and preserved the anti-apoptotic actions of serum when hSpry2 was silenced. Additionally, silencing of Spry2 in c-Cbl null cells did not alter the ability of serum to promote cell survival. Moreover, reintroduction of wild type hSPRY2, but not its mutants that do not bind c-Cbl or CIN85 into SW13 cells after endogenous hSPRY2 had been silenced, restored the anti-apoptotic actions of serum. Overall, we conclude that endogenous hSPRY2-mediated regulation of apoptosis requires c-Cbl and is manifested by the ability of hSPRY2 to sequester c-Cbl and thereby augment signaling via growth factor receptors.


Assuntos
Adenocarcinoma/metabolismo , Córtex Suprarrenal/patologia , Apoptose , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neoplasias Renais/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , RNA/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Receptores ErbB/metabolismo , Humanos , Proteínas de Membrana , Receptores de Fatores de Crescimento/metabolismo , Ativação Transcricional
18.
Biol Psychiatry ; 62(5): 505-12, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17336937

RESUMO

BACKGROUND: Reductions in cell number are found within the medial prefrontal cortex (PFC) in major depression and bipolar disorder, conditions for which electroconvulsive therapy (ECT) is a highly effective treatment. We investigated whether electroconvulsive seizure (ECS) in rats stimulates cellular proliferation in the PFC immediately and four weeks after the treatments. In parallel, we examined if ECS also alters the expression of Sprouty2 (SPRY2), an inhibitor of cell proliferation. METHODS: Sprague-Dawley rats received 10 days of ECS treatments and bromodeoxyuridine (BrdU) injections. After a four week survival period, we estimated the density and number of BrdU-, proliferating cell nuclear antigen (PCNA)-, and SPRY2-immunoreactive cells in the medial (infralimbic) PFC (ILPFC). We also determined the percentage of BrdU-labeled cells that were immunoreactive for markers specific to oligodendrocytes, astrocytes, endothelial cells and neurons. RESULTS: ECS dramatically enhanced the proliferation of new cells in the infralimbic PFC, and this effect persisted four weeks following the treatments. The percentage of new cells expressing oligodendrocyte precursor cell markers increased slightly following ECS. In contrast, ECS dramatically reduced the number of cells expressing SPRY2. CONCLUSIONS: ECS stimulates long-lasting increases in glial proliferation within the ILPFC. ECS also decreases SPRY2 expression in the same region, an effect that might contribute to increased glial proliferation.


Assuntos
Proliferação de Células/efeitos da radiação , Eletrochoque , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/patologia , Córtex Pré-Frontal/metabolismo , Convulsões/etiologia , Análise de Variância , Animais , Antígenos/metabolismo , Bromodesoxiuridina/metabolismo , Contagem de Células/métodos , Regulação da Expressão Gênica/fisiologia , Regulação da Expressão Gênica/efeitos da radiação , Masculino , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/patologia , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/efeitos da radiação , Proteoglicanas/metabolismo , Ratos , Ratos Sprague-Dawley , Convulsões/metabolismo , Convulsões/patologia
19.
J Biol Chem ; 282(1): 294-302, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17110384

RESUMO

In a yeast two-hybrid screen of mouse brain cDNA library, using the N-terminal region of human type V adenylyl cyclase (hACV) as bait, we identified G protein beta2 subunit as an interacting partner. Additional yeast two-hybrid assays showed that the Gbeta(1) subunit also interacts with the N-terminal segments of hACV and human type VI adenylyl cyclase (hACVI). In vitro adenylyl cyclase (AC) activity assays using membranes of Sf9 cells expressing hACV or hACVI showed that Gbetagamma subunits enhance the activity of these enzymes provided either Galpha(s) or forskolin is present. Deletion of residues 77-151, but not 1-76, in the N-terminal region of hACVI obliterated the ability of Gbetagamma subunits to conditionally stimulate the enzyme. Likewise, activities of the recombinant, engineered, soluble forms of ACV and ACVI, which lack the N termini, were not enhanced by Gbetagamma subunits. Transfection of the C terminus of G protein receptor kinase 2 to sequester endogenous Gbetagamma subunits attenuated the ability of isoproterenol to increase cAMP accumulation in COS-7 cells overexpressing hACVI even when G(i) was inactivated by pertussis toxin. Therefore, we conclude that the N termini of human hACV and hACVI are necessary for interactions with, and regulation by, Gbetagamma subunits both in vitro and in intact cells. Moreover, Gbetagamma subunits derived from a source(s) other than G(i) are necessary for the full activation of hACVI by isoproterenol in intact cells.


Assuntos
Adenilil Ciclases/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Isoenzimas/metabolismo , Animais , Encéfalo/metabolismo , Células COS , Chlorocebus aethiops , Cães , Humanos , Insetos , Camundongos , Toxina Pertussis/química , Ratos , Técnicas do Sistema de Duplo-Híbrido
20.
Arch Biochem Biophys ; 453(2): 151-60, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16919234

RESUMO

Mutations and altered functionality of the inhibitory subfamily of G proteins (Gi) are involved in pathological states. Compounds able to activate Gi in a receptor-independent manner would be useful to treat these pathological conditions. Aimed to study Gi direct activation we have reconstituted a recombinant transductor-effector complex cloning both the mammalian Galpha(i1) subunit and adenylate cyclase (AC). The myristoylation of Galpha, fundamental for interaction with AC, was obtained in the procaryotic expression host Escherichia coli transformed with a single plasmid containing both the coding sequences for human Galpha(i1) and Saccharomyces cerevisiae myristoyl transferase. AC-V isoform was obtained by the expression of its cytosolic domains. A recent synthesized molecule, named BC5, was tested to evaluate its pharmacological profile in a Gi/AC cell-free complex model. In this functional transductor-effector system BC5 was able to activate Gi signalling, moreover providing a new tool to give a better insight into G-protein receptor-independent modulation.


Assuntos
Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Engenharia de Proteínas/métodos , Transdução Genética/métodos , Adenilil Ciclases/análise , Adenilil Ciclases/genética , Ativação Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/análise , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA