Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(17): 15436-15446, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30990301

RESUMO

Phosphate-based glasses (PBGs) are bioactive and fully degradable materials with tailorable degradation rates. PBGs can be produced as porous microspheres through a single-step process, using changes in their formulation and geometry to produce varying pore sizes and interconnectivity for use in a range of applications, including biomedical use. Calcium phosphate PBGs have recently been proposed as orthobiologics, based on their in vitro cytocompatibility and ion release profile. In this study, porous microspheres made of two PBG formulations either containing TiO2 (P40Ti) or without (P40) were implanted in vivo in a large animal model of bone defect. The biocompatibility and osteogenic potential of these porous materials were assessed 13 weeks postimplantation in sheep and compared to empty defects and autologous bone grafts used as negative and positive controls. Histological analysis showed marked differences between the two formulations, as lower trabeculae-like interconnection and higher fatty bone marrow content were observed in the faster degrading P40-implanted defects, while the slower degrading P40Ti material promoted dense interconnected tissue. Autologous bone marrow concentrate (BMC) was also incorporated within the P40 and P40Ti microspheres in some defects; however, no significant differences were observed in comparison to microspheres implanted alone. Both formulations induced the formation of a collagen-enriched matrix, from 20 to 40% for P40 and P40Ti2.5 groups, suggesting commitment toward the bone lineage. With the faster degrading P40 formulation, mineralization of the tissue matrix was observed both with and without BMC. Some lymphocyte-like cells and foreign body multinucleated giant cells were observed with P40Ti2.5, suggesting that this more durable formulation might be linked to an inflammatory response. In conclusion, these first in vivo results indicate that PBG microspheres could be useful candidates for bone repair and regenerative medicine strategies and highlight the role of material degradation in the process of tissue formation and maturation.


Assuntos
Materiais Biocompatíveis/química , Vidro/química , Microesferas , Fosfatos/química , Engenharia Tecidual , Animais , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Doenças Ósseas/patologia , Doenças Ósseas/terapia , Células da Medula Óssea/citologia , Transplante de Medula Óssea , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Modelos Animais de Doenças , Osteogênese/efeitos dos fármacos , Porosidade , Ovinos , Titânio/química , Microtomografia por Raio-X
2.
J Tissue Eng Regen Med ; 13(3): 396-405, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30666804

RESUMO

Phosphate-based glasses (PBGs) are ideal materials for regenerative medicine strategies because their composition, degradation rates, and ion release profiles can easily be controlled. Strontium has previously been found to simultaneously affect bone resorption and deposition. Therefore, by combining the inherent properties of resorbable PBG and therapeutic activity of strontium, these glasses could be used as a delivery device of therapeutic factors for the treatment of orthopaedic diseases such as osteoporosis. This study shows the cytocompatibility and osteogenic potential of PBGs where CaO is gradually replaced by SrO in the near invert glass system 40P2 O5 ·(16-x)CaO·20Na2 O·24MgO·xSrO (x = 0, 4, 8, 12, and 16 mol%). Direct seeding of MG63 cells onto glass discs showed no significant difference in cell metabolic activity and DNA amount measurement across the different formulations studied. Cell attachment and spreading was confirmed via scanning electron microscopy (SEM) imaging at Days 3 and 14. Alkaline phosphatase (ALP) activity was similarly maintained across the glass compositions. Follow-on studies explored the effect of each glass composition in microsphere conformation (size: 63-125 µm) on human mesenchymal stem cells (hMSCs) in 3D cultures, and analysis of cell metabolic activity and ALP activity showed no significant differences at Day 14 over the compositional range investigated, in line with the observations from MG63 cell culture studies. Environmental SEM and live cell imaging at Day 14 of hMSCs seeded on the microspheres showed cell attachment and colonisation of the microsphere surfaces, confirming these formulations as promising candidates for regenerative medicine strategies addressing compromised musculoskeletal/orthopaedic diseases.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Cálcio/farmacologia , Vidro/química , Microesferas , Fosfatos/farmacologia , Estrôncio/farmacologia , Fosfatase Alcalina/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/ultraestrutura
3.
Acta Biomater ; 72: 396-406, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29604438

RESUMO

Orthobiologics is a rapidly advancing field utilising cell-based therapies and biomaterials to enable the body to repair and regenerate musculoskeletal tissues. This paper reports on a cost-effective flame spheroidisation process for production of novel porous glass microspheres from calcium phosphate-based glasses to encapsulate and deliver stem cells. Careful selection of the glass and pore-forming agent, along with a manufacturing method with the required processing window enabled the production of porous glass microspheres via a single-stage manufacturing process. The morphological and physical characterisation revealed porous microspheres with tailored surface and interconnected porosity (up to 76 ±â€¯5%) with average pore size of 55 ±â€¯8 µm and surface areas ranging from 0.34 to 0.9 m2 g-1. Furthermore, simple alteration of the processing parameters produced microspheres with alternate unique morphologies, such as with solid cores and surface porosity only. The tuneable porosity enabled control over their surface area, degradation profiles and hence ion release rates. Furthermore, cytocompatibility of the microspheres was assessed using human mesenchymal stem cells via direct cell culture experiments and analysis confirmed that they had migrated to within the centre of the microspheres. The novel microspheres developed have huge potential for tissue engineering and regenerative medicine applications. STATEMENT OF SIGNIFICANCE: This manuscript highlights a simple cost-effective one-step process for manufacturing porous calcium phosphate-based glass microspheres with varying control over surface pores and fully interconnected porosity via a flame spheroidisation process. Moreover, a simple alteration of the processing parameters can produce microspheres which have a solid core with surface pores only. The tuneable porosity enabled control over their surface area, degradation profiles and hence ion release rates. The paper also shows that stem cells not only attach and proliferate but more importantly migrate to within the core of the porous microspheres, highlighting applications for bone tissue engineering and regenerative medicine.


Assuntos
Fosfatos de Cálcio , Células Imobilizadas , Vidro/química , Teste de Materiais , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Microesferas , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Linhagem Celular Transformada , Movimento Celular/efeitos dos fármacos , Células Imobilizadas/citologia , Células Imobilizadas/metabolismo , Células Imobilizadas/transplante , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Porosidade
4.
Prog Biomater ; 4(1): 1-19, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29470791

RESUMO

An overview of microspheres manufactured for use in biomedical applications based on recent literature is presented in this review. Different types of glasses (i.e. silicate, borate, and phosphates), ceramics and polymer-based microspheres (both natural and synthetic) in the form of porous , non-porous and hollow structures that are either already in use or are currently being investigated within the biomedical area are discussed. The advantages of using microspheres in applications such as drug delivery, bone tissue engineering and regeneration, absorption and desorption of substances, kinetic release of the loaded drug components are also presented. This review also reports on the preparation and characterisation methodologies used for the manufacture of these microspheres. Finally, a brief summary of the existing challenges associated with processing these microspheres which requires further research and development are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA