Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(12)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34943821

RESUMO

Although circadian rhythms are thought to be essential for maintaining body health, the effects of chronic circadian disruption during neurodevelopment remain elusive. Here, using the "Short Day" (SD) mouse model, in which an 8 h/8 h light/dark (LD) cycle was applied from embryonic day 1 to postnatal day 42, we investigated the molecular and behavioral changes after circadian disruption in mice. Adult SD mice fully entrained to the 8 h/8 h LD cycle, and the circadian oscillations of the clock proteins, PERIOD1 and PERIOD2, were disrupted in the suprachiasmatic nucleus and the hippocampus of these mice. By RNA-seq widespread changes were identified in the hippocampal transcriptome, which are functionally associated with neurodevelopment, translational control, and autism. By western blotting and immunostaining hyperactivation of the mTOR and MAPK signaling pathways and enhanced global protein synthesis were found in the hippocampi of SD mice. Electrophysiological recording uncovered enhanced excitatory, but attenuated inhibitory, synaptic transmission in the hippocampal CA1 pyramidal neurons. These functional changes at synapses were corroborated by the immature morphology of the dendritic spines in these neurons. Lastly, autistic-like animal behavioral changes, including impaired social interaction and communication, increased repetitive behaviors, and impaired novel object recognition and location memory, were found in SD mice. Together, these results demonstrate molecular, cellular, and behavioral changes in SD mice, all of which resemble autistic-like phenotypes caused by circadian rhythm disruption. The findings highlight a critical role for circadian rhythms in neurodevelopment.


Assuntos
Envelhecimento/patologia , Transtorno Autístico/fisiopatologia , Comportamento Animal , Encéfalo/embriologia , Encéfalo/efeitos da radiação , Ritmo Circadiano/fisiologia , Luz , Animais , Transtorno Autístico/genética , Relógios Biológicos/genética , Ritmo Circadiano/genética , Espinhas Dendríticas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genoma , Hipocampo/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Atividade Motora , Fotoperíodo , Biossíntese de Proteínas , Fatores de Risco , Transmissão Sináptica , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica
2.
Brain Sci ; 10(11)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182385

RESUMO

Depression, anxiety and related mood disorders are major psychiatric illnesses worldwide, and chronic stress appears to be one of the primary underlying causes. Therapeutics to treat these debilitating disorders without a relapse are limited due to the incomplete molecular understanding of their etiopathology. In addition to the well-studied genetic component, research in the past two decades has implicated diverse epigenetic mechanisms in mediating the negative effects of chronic stressful events on neural circuits. This includes the cognitive circuitry, where the dynamic hippocampal dentate gyrus (DG) neurogenesis gets affected in depression and related affective disorders. Most of these epigenetic studies have focused on the impact of acetylation/deacetylation and methylation of several histone lysine residues on neural gene expression. However, there is a dearth of investigation into the role of demethylation of these lysine residues in chronic stress-induced changes in neurogenesis that results in altered behaviour. Here, using the chronic social defeat stress (CSDS) paradigm to induce depression and anxiety in C57BL/6 mice and ex vivo DG neural stem/progenitor cell (NSCs/NPCs) culture we show the role of the members of the JMJD2/KDM4 family of histone lysine demethylases (KDMs) in mediating stress-induced changes in DG neurogenesis and mood disorders. The study suggests a critical role of JMJD2D in DG neurogenesis. Altered enrichment of JMJD2D on the promoters of Id2 (inhibitor of differentiation 2) and Sox2 (SRY-Box Transcription Factor 2) was observed during proliferation and differentiation of NSCs/NPCs obtained from the DG. This would affect the demethylation of repressive epigenetic mark H3K9, thus activating or repressing these and possibly other genes involved in regulating proliferation and differentiation of DG NSCs/NPCs. Treatment of the NSCs/NPCs culture with Dimethyloxallyl Glycine (DMOG), an inhibitor of JMJDs, led to attenuation in their proliferation capacity. Additionally, systemic administration of DMOG in mice for 10 days induced depression-like and anxiety-like phenotype without any stress exposure.

3.
Mol Brain ; 13(1): 111, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778145

RESUMO

The dopamine (DA) system has a profound impact on reward-motivated behavior and is critically involved in neurodevelopmental disorders, such as autism spectrum disorder (ASD). Although DA defects are found in autistic patients, it is not well defined how the DA pathways are altered in ASD and whether DA can be utilized as a potential therapeutic agent for ASD. To this end, we employed a phenotypic and a genetic ASD model, i.e., Black and Tan BRachyury T+Itpr3tf/J (BTBR) mice and Fragile X Mental Retardation 1 knockout (Fmr1-KO) mice, respectively. Immunostaining of tyrosine hydroxylase (TH) to mark dopaminergic neurons revealed an overall reduction in the TH expression in the substantia nigra, ventral tegmental area and dorsal striatum of BTBR mice, as compared to C57BL/6 J wild-type ones. In contrast, Fmr1-KO animals did not show such an alteration but displayed abnormal morphology of TH-positive axons in the striatum with higher "complexity" and lower "texture". Both strains exhibited decreased expression of striatal dopamine transporter (DAT) and increased spatial coupling between vesicular glutamate transporter 1 (VGLUT1, a label for glutamatergic terminals) and TH signals, while GABAergic neurons quantified by glutamic acid decarboxylase 67 (GAD67) remained intact. Intranasal administration of DA rescued the deficits in non-selective attention, object-based attention and social approaching of BTBR mice, likely by enhancing the level of TH in the striatum. Application of intranasal DA to Fmr1-KO animals alleviated their impairment of social novelty, in association with reduced striatal TH protein. These results suggest that although the DA system is modified differently in the two ASD models, intranasal treatment with DA effectively rectifies their behavioral phenotypes, which may present a promising therapy for diverse types of ASD.


Assuntos
Transtorno Autístico/tratamento farmacológico , Dopamina/metabolismo , Dopamina/uso terapêutico , Administração Intranasal , Animais , Atenção , Comportamento Animal , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/administração & dosagem , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Comportamento Exploratório , Proteínas Fetais/metabolismo , Fractais , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Comportamento Social , Proteínas com Domínio T/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
4.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 152-164, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664837

RESUMO

Cerebral ischemic stroke is one of the leading causes of death and disability worldwide. Therapeutic interventions to minimize ischemia-induced neural damage are limited due to poor understanding of molecular mechanisms mediating complex pathophysiology in stroke. Recently, epigenetic mechanisms mostly histone lysine (K) acetylation and deacetylation have been implicated in ischemic brain damage and have expanded the dimensions of potential therapeutic intervention to the systemic/local administration of histone deacetylase inhibitors. However, the role of other epigenetic mechanisms such as histone lysine methylation and demethylation in stroke-induced damage and subsequent recovery process is elusive. Here, we established an Internal Carotid Artery Occlusion (ICAO) model in CD1 mouse that resulted in mild to moderate level of ischemic damage to the striatum, as suggested by magnetic resonance imaging (MRI), TUNEL and histopathological staining along with an evaluation of neurological deficit score (NDS), grip strength and rotarod performance. The molecular investigations show dysregulation of a number of histone lysine methylases (KMTs) and few of histone lysine demethylases (KDMs) post-ICAO with significant global attenuation in the transcriptionally repressive epigenetic mark H3K9me2 in the striatum. Administration of Dimethyloxalylglycine (DMOG), an inhibitor of KDM4 or JMJD2 class of histone lysine demethylases, significantly ameliorated stroke-induced NDS by restoring perturbed H3K9me2 levels in the ischemia-affected striatum. Overall, these results highlight the novel role of epigenetic regulatory mechanisms controlling the epigenetic mark H3K9me2 in mediating the stroke-induced striatal damage and subsequent repair following mild to moderate cerebral ischemia.


Assuntos
Isquemia Encefálica/genética , Epigênese Genética , Histona Desmetilases/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Lisina/genética , Aminoácidos Dicarboxílicos/farmacologia , Aminoácidos Dicarboxílicos/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Morte Celular/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Desmetilação/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Masculino , Metilação/efeitos dos fármacos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA