Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(6): 112578, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37267108

RESUMO

Chondrosarcomas are the most common malignancy of cartilage and are associated with somatic mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 genes. Somatic IDH mutations are also found in its benign precursor lesion, enchondromas, suggesting that IDH mutations are early events in malignant transformation. Human mutant IDH chondrosarcomas and mutant Idh mice that develop enchondromas investigated in our studies display glycogen deposition exclusively in mutant cells from IDH mutant chondrosarcomas and Idh1 mutant murine growth plates. Pharmacologic blockade of glycogen utilization induces changes in tumor cell behavior, downstream energetic pathways, and tumor burden in vitro and in vivo. Mutant IDH1 interacts with hypoxia-inducible factor 1α (HIF1α) to regulate expression of key enzymes in glycogen metabolism. Here, we show a critical role for glycogen in enchondromas and chondrosarcomas, which is likely mediated through an interaction with mutant IDH1 and HIF1α.


Assuntos
Condroma , Condrossarcoma , Isocitrato Desidrogenase , Animais , Humanos , Camundongos , Neoplasias Ósseas/metabolismo , Cartilagem/metabolismo , Condrossarcoma/genética , Condrossarcoma/metabolismo , Condrossarcoma/patologia , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação/genética
2.
Cancer Metab ; 9(1): 13, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762012

RESUMO

BACKGROUND: Majority of chondrosarcomas are associated with a number of genetic alterations, including somatic mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 genes, but the downstream effects of these mutated enzymes on cellular metabolism and tumor energetics are unknown. As IDH mutations are likely to be involved in malignant transformation of chondrosarcomas, we aimed to exploit metabolomic changes in IDH mutant and non-mutant chondrosarcomas. METHODS: Here, we profiled over 69 metabolites in 17 patient-derived xenografts by targeted mass spectrometry to determine if metabolomic differences exist in mutant IDH1, mutant IDH2, and non-mutant chondrosarcomas. UMAP (Uniform Manifold Approximation and Projection) analysis was performed on our dataset to examine potential similarities that may exist between each chondrosarcoma based on genotype. RESULTS: UMAP revealed that mutant IDH chondrosarcomas possess a distinct metabolic profile compared with non-mutant chondrosarcomas. More specifically, our targeted metabolomics study revealed large-scale differences in organic acid intermediates of the tricarboxylic acid (TCA) cycle, amino acids, and specific acylcarnitines in chondrosarcomas. Lactate and late TCA cycle intermediates were elevated in mutant IDH chondrosarcomas, suggestive of increased glycolytic metabolism and possible anaplerotic influx to the TCA cycle. A broad elevation of amino acids was found in mutant IDH chondrosarcomas. A few acylcarnitines of varying carbon chain lengths were also elevated in mutant IDH chondrosarcomas, but with minimal clustering in accordance with tumor genotype. Analysis of previously published gene expression profiling revealed increased expression of several metabolism genes in mutant IDH chondrosarcomas, which also correlated to patient survival. CONCLUSIONS: Overall, our findings suggest that IDH mutations induce global metabolic changes in chondrosarcomas and shed light on deranged metabolic pathways.

3.
JCI Insight ; 52019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31039139

RESUMO

Enchondroma and chondrosarcoma are the most common benign and malignant cartilaginous neoplasms. Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) are present in the majority of these tumors. We performed RNA-seq analysis on chondrocytes from Col2a1Cre;Idh1LSL/+ animals and found that genes implied in cholesterol synthesis pathway were significantly upregulated in the mutant chondrocytes. We examined the phenotypic effect of inhibiting intracellular cholesterol biosynthesis on enchondroma formation by conditionally deleting SCAP (sterol regulatory element-binding protein cleavage-activating protein), a protein activating intracellular cholesterol synthesis, in IDH1 mutant mice. We found fewer enchondromas in animals lacking SCAP. Furthermore, in chondrosarcomas, pharmacological inhibition of intracellular cholesterol synthesis significantly reduced chondrosarcoma cell viability in vitro and suppressed tumor growth in vivo. Taken together, these data suggest that intracellular cholesterol synthesis is a potential therapeutic target for enchondromas and chondrosarcomas.


Assuntos
Colesterol/biossíntese , Condroma/metabolismo , Condrossarcoma/metabolismo , Predisposição Genética para Doença/genética , Animais , Sobrevivência Celular , Condrócitos/metabolismo , Condroma/tratamento farmacológico , Condroma/genética , Condroma/patologia , Condrossarcoma/tratamento farmacológico , Condrossarcoma/genética , Condrossarcoma/patologia , Modelos Animais de Doenças , Isocitrato Desidrogenase/genética , Lovastatina/farmacologia , Camundongos , Camundongos Knockout , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA