Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37776441

RESUMO

The upregulation of HDAC1 facilitate the induction of epigenetic repression of genes responsible for suppressing tumourigenesis, thereby triggering the development of cancer. HDAC1 inhibitors have thus emerged as possible therapeutic approaches against a variety of human malignancies, as they can inhibit the activity of certain HDACs, repair the overexpression of tumour suppressor genes, and induce cell differentiation, cell cycle arrest, and apoptosis. In this study, among 810 virtually screened compounds, Pinocembrin (PHUB000396) had a significant binding affinity (-7.99 kcal/mol). In molecular dynamics simulation (MD) studies for 200 ns time scale, the compound Pinocembrin effectively undergoes conformational optimization, thereby enabling its accommodation within the active site of the receptor. This outcome serves as a rational for the observed binding affinity. The optimal binding free energy calculations using the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) (-35.86 ± 7.52 kcal/mol) showed the significant role of van der Waals forces and Coulomb interactions in the stability of the respective complex. The pharmacokinetic study showed its potential as a lead compound. The in-silico cytotoxicity prediction also confirmed its potential as an active anticancer phytocompound in lung and brain cancer. Therefore, it can be predicted that Pinocembrin could be a useful bioactive compound as an HDAC1 inhibitor and could be used in developing epigenetic therapy in cancer such as brain cancer and lung cancer to regulate gene expression.

2.
Int J Biol Macromol ; 237: 124174, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36990405

RESUMO

The burning of plastic trash contributes significantly to the problem of air pollution. Consequently, a wide variety of toxic gases get released into the atmosphere. It is of the utmost importance to develop biodegradable polymers that retain the same characteristics as those obtained from petroleum. In order to decrease the effect that these issues have on the world around us, we need to focus our attention on specific alternative sources capable of biodegrading in their natural environments. Biodegradable polymers have garnered much attention since they can break down through the processes carried out by living creatures. Biopolymers' applications are growing due to their non-toxic nature, biodegradability, biocompatibility, and environmental friendliness. In this regard, we examined numerous methods used to manufacture biopolymers and the critical components from which they get their functional properties. In recent years, economic and environmental concerns have reached a tipping point, increasing production based on sustainable biomaterials. This paper examines plant-based biopolymers as a good resource with potential applications in both biological and non-biological sectors. Scientists have devised various biopolymer synthesis and functionalization techniques to maximize its utility in various applications. In conclusion, recent developments in the functionalization of biopolymers through various plant products and their applications are discussed.


Assuntos
Materiais Biocompatíveis , Polímeros , Biopolímeros , Plásticos
3.
Front Chem ; 11: 1118454, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959877

RESUMO

Medicinal plants are long known for their therapeutic applications. Tinospora cordifolia (commonly called gulancha or heart-leaved moonseed plant), a herbaceous creeper widely has been found to have antimicrobial, anti-inflammatory, anti-diabetic, and anti-cancer properties. However, there remains a dearth of reports regarding its antibiofilm activities. In the present study, the anti-biofilm activities of phytoextractof T. cordifolia and the silver nanoparticles made from this phytoextract were tested against the biofilm of S.taphylococcus aureus, one of the major nosocomial infection-producing bacteria taking tetracycline antibiotic as control. Both phytoextract from the leaves of T. cordifolia, and the biogenic AgNPs from the leaf extract of T. cordifolia, were found successful in reducing the biofilm of Staphylococcus aureus. The biogenic AgNPs formed were characterized by UV- Vis spectroscopy, Field emission Scanning Electron Microscopy (FE- SEM), and Dynamic light scattering (DLS) technique. FE- SEM images showed that the AgNPs were of size ranging between 30 and 50 nm and were stable in nature, as depicted by the zeta potential analyzer. MIC values for phytoextract and AgNPs were found to be 180 mg/mL and 150 µg/mL against S. aureusrespectively. The antibiofilm properties of the AgNPs and phytoextract were analyzed using the CV assay and MTT assay for determining the reduction of biofilms. Reduction in viability count and revival of the S. aureus ATCC 23235 biofilm cells were analyzed followed by the enfeeblement of the EPS matrix to quantify the reduction in the contents of carbohydrates, proteins and eDNA. The SEM analyses clearly indicated that although the phytoextracts could destroy the biofilm network of S. aureuscells yet the biogenicallysynthesizedAgNPs were more effective in biofilm disruption. Fourier Transformed Infrared Radiations (FT- IR) analyses revealed that the AgNPs could bring about more exopolysaccharide (EPS) destruction in comparison to the phytoextract. The antibiofilm activities of AgNPs made from the phytoextract were found to be much more effective than the non-conjugated phytoextract, indicating the future prospect of using such particles for combatting biofilm-mediated infections caused by S aureus.

4.
Arch Microbiol ; 205(1): 54, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36602609

RESUMO

The ocean is a treasure trove of both living and nonliving creatures, harboring incredibly diverse group of organisms. A plethora of marine sourced bioactive compounds are discovered over the past few decades, many of which are found to show antibiofilm activity. These are of immense clinical significance since the formation of microbial biofilm is associated with the development of high antibiotic resistance. Biofilms are also responsible to bring about problems associated with industries. In fact, the toilets and wash-basins also show degradation due to development of biofilm on their surfaces. Antimicrobial resistance exhibited by the biofilm can be a potent threat not only for the health care unit along with industries and daily utilities. Various recent studies have shown that the marine members of various kingdom are capable of producing antibiofilm compounds. Many such compounds are with unique structural features and metabolomics approaches are essential to study such large sets of metabolites. Associating holobiome metabolomics with analysis of their chemical attribute may bring new insights on their antibiofilm effect and their applicability as a substitute for conventional antibiotics. The application of computer-aided drug design/discovery (CADD) techniques including neural network approaches and structured-based virtual screening, ligand-based virtual screening in combination with experimental validation techniques may help in the identification of these molecules and evaluation of their drug like properties.


Assuntos
Antibacterianos , Biofilmes , Antibacterianos/farmacologia , Desenho de Fármacos
5.
Appl Biochem Biotechnol ; 195(9): 5312-5328, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34989967

RESUMO

Leonurus sibiricus (Red verticilla, honeyweed) is a type of herbaceous plant predominantly found in Asian subcontinents as weed in crop fields and is widely used for treating diabetes, bronchitis, and menstrual irregularities. However, there is a dearth of study in the application of the plant phytocompounds for treating biofilm-associated chronic infections. The bioactive compounds mainly comprise of tri-terpenes, di-terpenes, phenolic acid, and flavonoids which may have potential role as antimicrobial and antibiofilm agents. Acute and chronic infection causing microbes usually form biofilm and develop virulence factors and antibiotic resistance through quorum sensing (QS). In this study, the bioactive compounds leosibirin, sibiricinone A, leosibirone A, leonotin, quercetin, lavandulifolioside, and myricetin were identified using GC-MS analysis. These were used for analyzing the antibiofilm and anti-quorum sensing activities (rhamnolipid, AHL assay, swarming motility assay) against the biofilm formed by Pseudomonas aeruginosa, the most significant nosocomial disease-causing bacteria. The compounds were able to bring about maximum inhibition in biofilm formation and QS. Although the antibiofilm activity of the phytoextract was found to be higher than that of individual phytocompounds at a concentration of 250 µg/mL, quercetin and myricetin showed highest antibiofilm activity against Pseudomonas aeruginosa, respectively, at MIC values of 135 µg/mL and 150 µg/mL against P aeruginosa. FT-IR study also revealed that the active ingredients were able to bring about the destruction of exopolysaccharides (EPS). These observations were further validated by molecular docking interactions that showed the active ingredients inhibit the functioning of QS sensing proteins by binding with them. It was observed that myricetin showed better interactions with the QS proteins of P. aeruginosa. Myricetin and quercetin show considerable inhibition of biofilm in comparison to the phytocompounds. Thus, the present study suggests that the active compounds from L. sibiricus can be used as an alternate strategy in inhibiting the biofilm formed by pathogenic organisms.


Assuntos
Leonurus , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Leonurus/metabolismo , Simulação de Acoplamento Molecular , Quercetina , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes , Fatores de Virulência/metabolismo
6.
Food Chem ; 405(Pt A): 134737, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36335734

RESUMO

Over the decade, fish protein-derived peptides (FPDP) have been evaluated for various biological activities including their mechanism of action through structure-activity relationship (SAR) and molecular simulation. SAR studies are known to provide the basic structural information of the active site which can be used for designing synthetic bioactive peptides for application in therapeutics and medicinal purposes. In light of the above discussion, this review discusses the mechanism of action and SAR of the FPDP with a focus on three widely studied bioactive properties including antioxidant, antihypertensive and anti-diabetic activities. The emphasis is given to the recently purified and identified FPDP from various seafood resources. A brief discussion has been made on their structural characteristics and mechanism of action towards antioxidant, angiotensin-I converting enzyme (ACE) inhibition, and dipeptidyl peptidase-IV (DPP-IV) inhibitory activities. Additionally, the importance and future perspective of SAR of food-derived bioactive peptides have been addressed.


Assuntos
Anti-Hipertensivos , Inibidores da Dipeptidil Peptidase IV , Animais , Anti-Hipertensivos/farmacologia , Simulação de Acoplamento Molecular , Dipeptidil Peptidase 4/química , Antioxidantes/farmacologia , Inibidores da Dipeptidil Peptidase IV/química , Proteínas de Peixes/farmacologia , Peptídeos/farmacologia , Peptídeos/química
7.
Front Bioeng Biotechnol ; 10: 1005918, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353741

RESUMO

The call to cater for the hungry is a worldwide problem in the 21st century. Food security is the utmost prime factor for the increasing demand for food. Awareness of human health when using chemical preservatives in food has increased, resulting in the use of alternative strategies for preserving food and enhancing its shelf-life. New preservatives along with novel preservation methods have been instigated, due to the intensified demand for extended shelf-life, along with prevention of food spoilage of dairy products. Bacteriocins are the group of ribosomally synthesized antimicrobial peptides; they possess a wide range of biological activities, having predominant antibacterial activity. The bacteriocins produced by the lactic acid bacteria (LAB) are considered to be of utmost importance, due to their association with the fermentation of food. In recent times among various groups of bacteriocins, leaderless and circular bacteriocins are gaining importance, due to their extensive application in industries. These groups of bacteriocins have been least studied as they possess peculiar structural and biosynthetic mechanisms. They chemically possess N-to-C terminal covalent bonds having a predominant peptide background. The stability of the bacteriocins is exhibited by the circular structure. Up till now, very few studies have been performed on the molecular mechanisms. The structural genes associated with the bacteriocins can be combined with the activity of various proteins which are association with secretion and maturation. Thus the stability of the bacteriocins can be used effectively in the preservation of food for a longer period of time. Bacteriocins are thermostable, pH-tolerant, and proteolytically active in nature, which make their usage convenient to the food industry. Several research studies are underway in the domain of biopreservation which can be implemented in food safety and food security.

8.
Front Microbiol ; 13: 939390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262331

RESUMO

The development of biofilm on the biotic and abiotic surfaces is the greatest challenge for health care sectors. At present times, oral infection is a common concern among people with an unhealthy lifestyle and most of these biofilms-associated infections are resistant to antibiotics. This has increased a search for the development of alternate therapeutics for eradicating biofilm-associated infection. Nanobiotechnology being an effective way to combat such oral infections may encourage the use of herbal compounds, such as bio-reducing and capping agents. Green-synthesis of ZnO nanoparticles (ZnO NP) by the use of the floral extract of Clitoria ternatea, a traditionally used medicinal plant, showed stability for a longer period of time. The NPs as depicted by the TEM image with a size of 10 nm showed excitation spectra at 360 nm and were found to remain stable for a considerable period of time. It was observed that the NPs were effective in the eradication of the oral biofilm formed by the major tooth attacking bacterial strains namely Porphyromonsas gingivalis and Alcaligenes faecalis, by bringing a considerable reduction in the extracellular polymeric substances (EPS). It was observed that the viability of the Porphyromonsas gingivalis and Alcaligenes faecalis was reduced by NP treatment to 87.89 ± 0.25% in comparison to that of amoxicillin. The results went in agreement with the findings of modeling performed by the use of response surface methodology (RSM) and artificial neural network (ANN). The microscopic studies and FT-IR analysis revealed that there was a considerable reduction in the biofilm after NP treatment. The in silico studies further confirmed that the ZnO NPs showed considerable interactions with the biofilm-forming proteins. Hence, this study showed that ZnO NPs derived from Clitoria ternatea can be used as an effective alternative therapeutic for the treatment of biofilm associated oral infection.

9.
Genet Test Mol Biomarkers ; 26(9): 449-456, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36166739

RESUMO

Introduction: Cytokines are cell signaling glycoproteins that are particularly important in immunity and inflammatory responses. Therefore, variations, such as single nucleotide polymorphisms (SNPs), in genes encoding for cytokines may have important consequences for their roles in health. Materials and Methods: A total of 222 unrelated, healthy, and un-admixed Malays (n = 97), Chinese (n = 77), and Indians (n = 48) with a median age of 30 years old (range 21-50) were typed for 22 cytokine gene SNPs: IL-1α -889 T/C, IL-1ß (-511 T/C, +3962 T/C), IL-1R pst1 1970 T/C, IL-1RA mspa1 11100 T/C, IL-4Rα +1902 G/A, IL-12 - 1188 C/A, IFN-γ +874 A/T, TGF-ß (cdn 10 C/T, cdn 25 G/C), TNF-α (-308 A/G, -238 A/G) IL-2 (+166 G/T, -330 T/G), IL-4 (-1098 T/G, -590 T/C, -33 T/C), IL-6 (-174 C/G, nt565 G/A), and IL-10 (-1082 G/A, -819 C/T, -592 A/C). This involved using well-established polymerase chain reaction procedures with sequence-specific primers and restriction fragment length polymorphism methods. Results: The majority of the screened cytokine gene SNPs are polymorphic in all three ethnicities. Exceptions include TGF-ß cdn 25 (G/C), IL-1ß +3962 (T/C), and TNF-α -238 (A/G), which were all observed to be monomorphic in Malays, Chinese and Indians. Many of the analyzed cytokine gene SNP genotypes deviated from Hardy-Weinberg equilibrium and the three ethnic study groups were all well-separated from reference Asian, African and European populations in a principal component analysis plot. Conclusion: We successfully typed 22 SNPs in 13 cytokine genes from genetic material collected from unrelated and un-admixed Malay, Chinese and Indian individuals in Peninsular Malaysia. These new cytokine gene population datasets reveal interesting contrasts with other populations.


Assuntos
Interleucina-10 , Polimorfismo de Nucleotídeo Único , Adulto , China , Citocinas/genética , Frequência do Gene/genética , Genótipo , Humanos , Proteína Antagonista do Receptor de Interleucina 1/genética , Interleucina-10/genética , Interleucina-12/genética , Interleucina-2/genética , Interleucina-4/genética , Interleucina-6/genética , Malásia , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fator de Crescimento Transformador beta/genética , Fator de Necrose Tumoral alfa/genética , Adulto Jovem
10.
Front Microbiol ; 13: 868220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966693

RESUMO

In microbial electrochemical systems, microorganisms catalyze chemical reactions converting chemical energy present in organic and inorganic molecules into electrical energy. The concept of microbial electrochemistry has been gaining tremendous attention for the past two decades, mainly due to its numerous applications. This technology offers a wide range of applications in areas such as the environment, industries, and sensors. The biocatalysts governing the reactions could be cell secretion, cell component, or a whole cell. The electroactive bacteria can interact with insoluble materials such as electrodes for exchanging electrons through colonization and biofilm formation. Though biofilm formation is one of the major modes for extracellular electron transfer with the electrode, there are other few mechanisms through which the process can occur. Apart from biofilm formation electron exchange can take place through flavins, cytochromes, cell surface appendages, and other metabolites. The present article targets the various mechanisms of electron exchange for microbiome-induced electron transfer activity, proteins, and secretory molecules involved in the electron transfer. This review also focuses on various proteomics and genetics strategies implemented and developed to enhance the exo-electron transfer process in electroactive bacteria. Recent progress and reports on synthetic biology and genetic engineering in exploring the direct and indirect electron transfer phenomenon have also been emphasized.

11.
Front Microbiol ; 13: 964848, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016778

RESUMO

The abrupt emergence of antimicrobial resistant (AMR) bacterial strains has been recognized as one of the biggest public health threats affecting the human race and food processing industries. One of the causes for the emergence of AMR is the ability of the microorganisms to form biofilm as a defense strategy that restricts the penetration of antimicrobial agents into bacterial cells. About 80% of human diseases are caused by biofilm-associated sessile microbes. Bacterial biofilm formation involves a cascade of genes that are regulated via the mechanism of quorum sensing (QS) and signaling pathways that control the production of the extracellular polymeric matrix (EPS), responsible for the three-dimensional architecture of the biofilm. Another defense strategy utilized commonly by various bacteria includes clustered regularly interspaced short palindromic repeats interference (CRISPRi) system that prevents the bacterial cell from viral invasion. Since multigenic signaling pathways and controlling systems are involved in each and every step of biofilm formation, the CRISPRi system can be adopted as an effective strategy to target the genomic system involved in biofilm formation. Overall, this technology enables site-specific integration of genes into the host enabling the development of paratransgenic control strategies to interfere with pathogenic bacterial strains. CRISPR-RNA-guided Cas9 endonuclease, being a promising genome editing tool, can be effectively programmed to re-sensitize the bacteria by targeting AMR-encoding plasmid genes involved in biofilm formation and virulence to revert bacterial resistance to antibiotics. CRISPRi-facilitated silencing of genes encoding regulatory proteins associated with biofilm production is considered by researchers as a dependable approach for editing gene networks in various biofilm-forming bacteria either by inactivating biofilm-forming genes or by integrating genes corresponding to antibiotic resistance or fluorescent markers into the host genome for better analysis of its functions both in vitro and in vivo or by editing genes to stop the secretion of toxins as harmful metabolites in food industries, thereby upgrading the human health status.

12.
Appl Biochem Biotechnol ; 194(10): 4655-4672, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35793062

RESUMO

Natural plant pigments have attracted researchers to investigate the application of these dyes in food products. Besides, public awareness of the adverse effects of synthetic dye also increased the demand for natural pigments. Various colours can be obtained from different plants. Interestingly, these pigments are not only beneficial in the appearance of final food products, but they are very advantageous to the plant itself, food and human nutrition. Hence, this article reviews the state-of-the-art establishment of plant pigment application in food products. This review starts with a brief explanation of plant pigment usage in food, followed by clarifications on the functions of six primary plant dyes and the extraction of the natural pigments. The importance of natural pigments is shared. A highlight of future challenges facing the food industry in utilizing natural pigment is also discussed.


Assuntos
Corantes , Pigmentos Biológicos , Indústria Alimentícia , Humanos , Plantas
13.
Appl Biochem Biotechnol ; 194(10): 4673-4682, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35802240

RESUMO

The reverse genetic approach has uncovered indole synthase (INS) as the first enzyme in the tryptophan (trp)-independent pathway of IAA synthesis. The importance of INS was reevaluated suggesting it may interact with tryptophan synthase B (TSB) and therefore involved in the trp-dependent pathway. Thus, the main aim of this study was to clarify the route of INS through the analysis of Arabidopsis genome. Analysis of the top 2000 co-expression gene lists in general and specific conditions shows that TSA is strongly positively co-expressed with TSB in general, hormone, and abiotic conditions with mutual ranks of 89, 38, and 180 respectively. Moreover, TSA is positively correlated with TSB (0.291). However, INS was not found in any of these coexpressed gene lists and negatively correlated with TSB (- 0.046) suggesting unambiguously that these two routes are separately and independently operated. So far, the remaining steps in the INS pathway have remained elusive. Among all enzymes reported to have a role in IAA synthesis, amidase was found to strongly positively co-expressed with INS in general and light conditions with mutual ranks of 116 and 141 respectively. Additionally, amidase1 was found to positively correlate with INS (0.297) and negatively coexpressed with TSB concluding that amidase may exclusively involve in the trp-independent pathway.


Assuntos
Arabidopsis , Triptofano Sintase , Amidoidrolases/genética , Amidoidrolases/metabolismo , Arabidopsis/genética , Hormônios/metabolismo , Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Triptofano/metabolismo , Triptofano Sintase/genética , Triptofano Sintase/metabolismo
14.
Front Microbiol ; 13: 955683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903478

RESUMO

Determination of the quality of food products is an essential key factor needed for safe-guarding the quality of food for the interest of the consumers, along with the nutritional and sensory improvements that are necessary for delivering better quality products. Bacteriocins are a group of ribosomally synthesized antimicrobial peptides that help in maintaining the quality of food. The implementation of multi-omics approach has been important for the overall enhancement of the quality of the food. This review uses various recent technologies like proteomics, transcriptomics, and metabolomics for the overall enhancement of the quality of food products. The matrix associated with the food products requires the use of sophisticated technologies that help in the extraction of a large amount of information necessary for the amelioration of the food products. This review would provide a wholesome view of how various recent technologies can be used for improving the quality food products and for enhancing their shelf-life.

15.
Front Nutr ; 9: 889276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529456

RESUMO

The seaweed industries generate considerable amounts of waste that must be appropriately managed. This biomass from marine waste is a rich source of high-value bioactive compounds. Thus, this waste can be adequately utilized by recovering the compounds for therapeutic purposes. Histone deacetylases (HDACs) are key epigenetic regulators established as one of the most promising targets for cancer chemotherapy. In the present study, our objective is to find the HDAC 2 inhibitor. We performed top-down in silico methodologies to identify potential HDAC 2 inhibitors by screening compounds from edible seaweed waste. One hundred ninety-three (n = 193) compounds from edible seaweeds were initially screened and filtered with drug-likeness properties using SwissADME. After that, the filtered compounds were followed to further evaluate their binding potential with HDAC 2 protein by using Glide high throughput virtual screening (HTVS), standard precision (SP), extra precision (XP), and quantum polarized ligand docking (QPLD). One compound with higher negative binding energy was selected, and to validate the binding mode and stability of the complex, molecular dynamics (MD) simulations using Desmond were performed. The complex-binding free energy calculation was performed using molecular mechanics-generalized born surface area (MM-GBSA) calculation. Post-MD simulation analyses such as PCA, DCCM, and free energy landscape were also evaluated. The quantum mechanical and electronic properties of the potential bioactive compounds were assessed using the density functional theory (DFT) study. These findings support the use of marine resources like edible seaweed waste for cancer drug development by using its bioactive compounds. The obtained results encourage further in vitro and in vivo research. Our in silico findings show that the compound has a high binding affinity for the catalytic site of the HDAC 2 protein and has drug-likeness properties, and can be utilized in drug development against cancer.

16.
Front Nutr ; 9: 879929, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464014

RESUMO

In recent times, the seafood industry is found to produce large volumes of waste products comprising shrimp shells, fish bones, fins, skins, intestines, and carcasses, along with the voluminous quantity of wastewater effluents. These seafood industry effluents contain large quantities of lipids, amino acids, proteins, polyunsaturated fatty acids, minerals, and carotenoids mixed with the garbage. This debris not only causes a huge wastage of various nutrients but also roots in severe environmental contamination. Hence, the problem of such seafood industry run-offs needs to be immediately managed with a commercial outlook. Microbiological treatment may lead to the valorization of seafood wastes, the trove of several useful compounds into value-added materials like enzymes, such as lipase, protease, chitinase, hyaluronidase, phosphatase, etc., and organic compounds like bioactive peptides, collagen, gelatin, chitosan, and mineral-based nutraceuticals. Such bioconversion in combination with a bio-refinery strategy possesses the potential for environment-friendly and inexpensive management of discards generated from seafood, which can sustainably maintain the production of seafood. The compounds that are being produced may act as nutritional sources or as nutraceuticals, foods with medicinal value. Determining utilization of seafood discard not only reduces the obnoxious deposition of waste but adds economy in the production of food with nutritional and medicinal importance, and, thereby meets up the long-lasting global demand of making nutrients and nutraceuticals available at a nominal cost.

17.
Front Nutr ; 9: 808630, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479755

RESUMO

Microbial communities within fermented food (beers, wines, distillates, meats, fishes, cheeses, breads) products remain within biofilm and are embedded in a complex extracellular polymeric matrix that provides favorable growth conditions to the indwelling species. Biofilm acts as the best ecological niche for the residing microbes by providing food ingredients that interact with the fermenting microorganisms' metabolites to boost their growth. This leads to the alterations in the biochemical and nutritional quality of the fermented food ingredients compared to the initial ingredients in terms of antioxidants, peptides, organoleptic and probiotic properties, and antimicrobial activity. Microbes within the biofilm have altered genetic expression that may lead to novel biochemical pathways influencing their chemical and organoleptic properties related to consumer acceptability. Although microbial biofilms have always been linked to pathogenicity owing to its enhanced antimicrobial resistance, biofilm could be favorable for the production of amino acids like l-proline and L-threonine by engineered bacteria. The unique characteristics of many traditional fermented foods are attributed by the biofilm formed by lactic acid bacteria and yeast and often, multispecies biofilm can be successfully used for repeated-batch fermentation. The present review will shed light on current research related to the role of biofilm in the fermentation process with special reference to the recent applications of NGS/WGS/omics for the improved biofilm forming ability of the genetically engineered and biotechnologically modified microorganisms to bring about the amelioration of the quality of fermented food.

18.
J Basic Microbiol ; 62(11): 1291-1306, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35373364

RESUMO

Biofilm-associated infections have increased excessively over the recent years due to the increased population having impaired immune systems or as a result of certain medical conditions like transplantation, cancer, and any other chronic ailments. The abrupt enhancement of antibiotic resistance and enhanced utilization of biomedical devices offer new opportunities for microbial colonization leading to the development of microbial biofilms. Total eradication of recalcitrant microbial biofilms demands the adoption of a holistic approach and since the fungal metabolites enriched with bioactive compounds show efficacy in inhibiting the multiple factors behind biofilm formation, the anti-biofilm activities of fungal metabolites need to be appraised. Being effective in preventing various steps of biofilm formation, including inhibition of surface adhesion and cell-to-cell communication through quorum quenching, blocking of quorum sensing receptors, and enzymes involved in microbial cell wall biosynthesis, targeting the virulence factors and finally killing of biofilm bound individual cells; myco-metabolites are found effective as a potent holistic anti-biofilm agent. The wide spectrum of bioactive substances of fungi and their anti-biofilm activities against different pathogens and their multitarget characteristics are very promising in the field of treating biofilm infections.


Assuntos
Antibacterianos , Biofilmes , Antibacterianos/farmacologia , Percepção de Quorum , Fatores de Virulência/metabolismo
19.
Nanomaterials (Basel) ; 12(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269266

RESUMO

The healing of chronic wound infections, especially cutaneous wounds, involves a complex cascade of events demanding mutual interaction between immunity and other natural host processes. Wound infections are caused by the consortia of microbial species that keep on proliferating and produce various types of virulence factors that cause the development of chronic infections. The mono- or polymicrobial nature of surface wound infections is best characterized by its ability to form biofilm that renders antimicrobial resistance to commonly administered drugs due to poor biofilm matrix permeability. With an increasing incidence of chronic wound biofilm infections, there is an urgent need for non-conventional antimicrobial approaches, such as developing nanomaterials that have intrinsic antimicrobial-antibiofilm properties modulating the biochemical or biophysical parameters in the wound microenvironment in order to cause disruption and removal of biofilms, such as designing nanomaterials as efficient drug-delivery vehicles carrying antibiotics, bioactive compounds, growth factor antioxidants or stem cells reaching the infection sites and having a distinct mechanism of action in comparison to antibiotics-functionalized nanoparticles (NPs) for better incursion through the biofilm matrix. NPs are thought to act by modulating the microbial colonization and biofilm formation in wounds due to their differential particle size, shape, surface charge and composition through alterations in bacterial cell membrane composition, as well as their conductivity, loss of respiratory activity, generation of reactive oxygen species (ROS), nitrosation of cysteines of proteins, lipid peroxidation, DNA unwinding and modulation of metabolic pathways. For the treatment of chronic wounds, extensive research is ongoing to explore a variety of nanoplatforms, including metallic and nonmetallic NPs, nanofibers and self-accumulating nanocarriers. As the use of the magnetic nanoparticle (MNP)-entrenched pre-designed hydrogel sheet (MPS) is found to enhance wound healing, the bio-nanocomposites consisting of bacterial cellulose and magnetic nanoparticles (magnetite) are now successfully used for the healing of chronic wounds. With the objective of precise targeting, some kinds of "intelligent" nanoparticles are constructed to react according to the required environment, which are later incorporated in the dressings, so that the wound can be treated with nano-impregnated dressing material in situ. For the effective healing of skin wounds, high-expressing, transiently modified stem cells, controlled by nano 3D architectures, have been developed to encourage angiogenesis and tissue regeneration. In order to overcome the challenge of time and dose constraints during drug administration, the approach of combinatorial nano therapy is adopted, whereby AI will help to exploit the full potential of nanomedicine to treat chronic wounds.

20.
Antibiotics (Basel) ; 11(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35052938

RESUMO

Increased resistance of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp. (ESKAPE) pathogens against various drugs has enhanced the urge for the development of alternate therapeutics. Quorum sensing (QS) is a density dependent cell-to-cell communication mechanism responsible for controlling pathogenicity with the regulation of gene expression. Thus, QS is considered a potential target for the development of newer anti-biofilm agents that do not depend on the utilization of antibiotics. Compounds with anti-QS effects are known as QS inhibitors (QSIs), and they can inhibit the QS mechanism that forms the major form in the development of bacterial pathogenesis. A diverse array of natural compounds provides a plethora of anti-QS effects. Over recent years, these natural compounds have gained importance as new strategies for combating the ESKAPE pathogens and inhibiting the genes involved in QS. Different pharmacognostical and pharmacological studies have been carried out so far for identification of novel drugs or for the discovery of their unique structures that may help in developing more effective anti-biofilm therapies. The main objective of this review is to discuss the various natural compounds, so far identified and their employed mechanisms in hindering the genes responsible for QS leading to bacterial pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA