Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 71: 103117, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479223

RESUMO

Accumulation of reactive oxygen species (i.e., oxidative stress) is a leading cause of beta cell dysfunction and apoptosis in diabetes. NRF2 (NF-E2 p45-related factor-2) regulates the adaptation to oxidative stress, and its activity is negatively regulated by the redox-sensitive CUL3 (cullin-3) ubiquitin ligase substrate adaptor KEAP1 (Kelch-like ECH-associated protein-1). Additionally, NRF2 is repressed by the insulin-regulated Glycogen Synthase Kinase-3 (GSK3). We have demonstrated that phosphorylation of NRF2 by GSK3 enhances ß-TrCP (beta-transducin repeat-containing protein) binding and ubiquitylation by CUL1 (cullin-1), resulting in increased proteasomal degradation of NRF2. Thus, we hypothesise that inhibition of GSK3 activity or ß-TrCP binding upregulates NRF2 and so protects beta cells against oxidative stress. We have found that treating the pancreatic beta cell line INS-1 832/13 with the KEAP1 inhibitor TBE31 significantly enhanced NRF2 protein levels. The presence of the GSK3 inhibitor CT99021 or the ß-TrCP-NRF2 protein-protein interaction inhibitor PHAR, along with TBE31, resulted in prolonged NRF2 stability and enhanced nuclear localisation (P < 0.05). TBE31-mediated induction of NRF2-target genes encoding NAD(P)H quinone oxidoreductase 1 (Nqo1), glutamate-cysteine ligase modifier (Gclm) subunit and heme oxygenase (Hmox1) was significantly enhanced by the presence of CT99021 or PHAR (P < 0.05) in both INS-1 832/13 and in isolated mouse islets. Identical results were obtained using structurally distinct GSK3 inhibitors and inhibition of KEAP1 with sulforaphane. In summary, we demonstrate that GSK3 and ß-TrCP/CUL1 regulate the proteasomal degradation of NRF2, enhancing the impact of KEAP1 regulation, and so contributes to the redox status of pancreatic beta cells. Inhibition of GSK3, or ß-TrCP/CUL1 binding to NRF2 may represent a strategy to protect beta cells from oxidative stress.


Assuntos
Quinase 3 da Glicogênio Sintase , Células Secretoras de Insulina , Animais , Camundongos , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Proteínas Culina/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Células Secretoras de Insulina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Estabilidade Proteica , Transcrição Gênica
3.
ACS Pharmacol Transl Sci ; 4(4): 1338-1348, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34423270

RESUMO

Elevated islet production of prostaglandin E2 (PGE2), an arachidonic acid metabolite, and expression of prostaglandin E2 receptor subtype EP3 (EP3) are well-known contributors to the ß-cell dysfunction of type 2 diabetes (T2D). Yet, many of the same pathophysiological conditions exist in obesity, and little is known about how the PGE2 production and signaling pathway influences nondiabetic ß-cell function. In this work, plasma arachidonic acid and PGE2 metabolite levels were quantified in a cohort of nondiabetic and T2D human subjects to identify their relationship with glycemic control, obesity, and systemic inflammation. In order to link these findings to processes happening at the islet level, cadaveric human islets were subject to gene expression and functional assays. Interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) mRNA levels, but not those of EP3, positively correlated with donor body mass index (BMI). IL-6 expression also strongly correlated with the expression of COX-2 and other PGE2 synthetic pathway genes. Insulin secretion assays using an EP3-specific antagonist confirmed functionally relevant upregulation of PGE2 production. Yet, islets from obese donors were not dysfunctional, secreting just as much insulin in basal and stimulatory conditions as those from nonobese donors as a percent of content. Islet insulin content, on the other hand, was increased with both donor BMI and islet COX-2 expression, while EP3 expression was unaffected. We conclude that upregulated islet PGE2 production may be part of the ß-cell adaption response to obesity and insulin resistance that only becomes dysfunctional when both ligand and receptor are highly expressed in T2D.

4.
Pharmacol Res Perspect ; 9(2): e00736, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33694300

RESUMO

Chronic elevations in fatty acid metabolites termed prostaglandins can be found in circulation and in pancreatic islets from mice or humans with diabetes and have been suggested as contributing to the ß-cell dysfunction of the disease. Two-series prostaglandins bind to a family of G-protein-coupled receptors, each with different biochemical and pharmacological properties. Prostaglandin E receptor (EP) subfamily agonists and antagonists have been shown to influence ß-cell insulin secretion, replication, and/or survival. Here, we define EP3 as the sole prostanoid receptor family member expressed in a rat ß-cell-derived line that regulates glucose-stimulated insulin secretion. Several other agonists classically understood as selective for other prostanoid receptor family members also reduce glucose-stimulated insulin secretion, but these effects are only observed at relatively high concentrations, and, using a well-characterized EP3-specific antagonist, are mediated solely by cross-reactivity with rat EP3. Our findings confirm the critical role of EP3 in regulating ß-cell function, but are also of general interest, as many agonists supposedly selective for other prostanoid receptor family members are also full and efficacious agonists of EP3. Therefore, care must be taken when interpreting experimental results from cells or cell lines that also express EP3.


Assuntos
Glucose/metabolismo , Secreção de Insulina/fisiologia , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina , Ratos , Receptores de Prostaglandina E Subtipo EP3/antagonistas & inibidores
5.
Metabolites ; 11(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467110

RESUMO

The transition from ß-cell compensation to ß-cell failure is not well understood. Previous works by our group and others have demonstrated a role for Prostaglandin EP3 receptor (EP3), encoded by the Ptger3 gene, in the loss of functional ß-cell mass in Type 2 diabetes (T2D). The primary endogenous EP3 ligand is the arachidonic acid metabolite prostaglandin E2 (PGE2). Expression of the pancreatic islet EP3 and PGE2 synthetic enzymes and/or PGE2 excretion itself have all been shown to be upregulated in primary mouse and human islets isolated from animals or human organ donors with established T2D compared to nondiabetic controls. In this study, we took advantage of a rare and fleeting phenotype in which a subset of Black and Tan BRachyury (BTBR) mice homozygous for the Leptinob/ob mutation-a strong genetic model of T2D-were entirely protected from fasting hyperglycemia even with equal obesity and insulin resistance as their hyperglycemic littermates. Utilizing this model, we found numerous alterations in full-body metabolic parameters in T2D-protected mice (e.g., gut microbiome composition, circulating pancreatic and incretin hormones, and markers of systemic inflammation) that correlate with improvements in EP3-mediated ß-cell dysfunction.

6.
J Ethnopharmacol ; 260: 112970, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32422353

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Costus pictus D. Don, commonly known as insulin plant, is a traditional Indian antidiabetic herbal medicine with glucose-lowering and insulin secretory effects having been reported in animal models and humans with Type 2 diabetes. However, its effects on GLP-1 secretion from intestinal endocrine L-cells and potential metabolic and protective effects in insulin secreting pancreatic ß-cells are not yet fully understood. AIM OF THE STUDY: This study is aimed to elucidate the effects of Costus pictus D. Don leaf extract (CPE) on L-cell function and GLP-1 secretion using the established murine GLUTag L-cell model and to investigate its potential cytoprotective effects against detrimental effects of palmitate and cytokines in pancreatic ß-cells using BRIN-BD11 cells. METHODS: Costus pictus D. Don dried leaf powder was extracted by soxhlet method. Cell viability was determined by MTT assay. Changes in gene and protein expression were quantified by qPCR and western blotting, respectively. GLP-1 and insulin secretion were measured by ELISA. RESULTS: CPE significantly enhanced the percentage of viable BRIN-BD11 and GLUTag cells and protected BRIN-BD11 cells against palmitate- and proinflammatory cytokine-induced toxicity. CPE enhanced acute GLP-1 secretion 6.4-16.3-fold from GLUTag cells at both low (1.1 mM) and high (16.7 mM) glucose (P < 0.01) concentrations. Antioxidant (Nrf2, Cat & Gpx1) and pro-proliferative (Erk1 and Jnk1) gene expression were upregulated by 24 h culture with CPE, while proinflammatory transcription factor NF-κB was downregulated. CONCLUSION: Diminished postprandial GLP-1 secretion and loss of insulin secreting ß-cells are known contributors of T2DM. Our data suggests that CPE acutely stimulates GLP-1 secretion from L-cells. Long term exposure of the BRIN-BD11 cells to CPE enhances cell number and may protect against palmitate and proinflammatory cytokines by activating multiple pathways. Thus, the current study suggests that the possible antidiabetic properties of CPE may be linked to enhanced GLP-1 secretion and ß-cell protection which could be beneficial in the management of T2DM.


Assuntos
Costus , Células Enteroendócrinas/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta , Animais , Linhagem Celular , Costus/química , Citocinas/toxicidade , Células Enteroendócrinas/metabolismo , Glucose/toxicidade , Hipoglicemiantes/isolamento & purificação , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Camundongos , Palmitatos/toxicidade , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Ratos , Via Secretória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA