Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Med ; 12: 235, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25472429

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is the tenth most commonly diagnosed cancer in the United States. While it is usually lethal when metastatic, RCC is successfully treated with surgery when tumors are confined to the kidney and have low tumor volume. Because most early stage renal tumors do not result in symptoms, there is a strong need for biomarkers that can be used to detect the presence of the cancer as well as to monitor patients during and after therapy. METHODS: We examined genome-wide DNA methylation alterations in renal cell carcinomas of diverse histologies and benign adjacent kidney tissues from 96 patients. RESULTS: We observed widespread methylation differences between tumors and benign adjacent tissues, particularly in immune-, G-protein coupled receptor-, and metabolism-related genes. Additionally, we identified a single panel of DNA methylation biomarkers that reliably distinguishes tumor from benign adjacent tissue in all of the most common kidney cancer histologic subtypes, and a second panel does the same specifically for clear cell renal cell carcinoma tumors. This set of biomarkers were validated independently with excellent performance characteristics in more than 1,000 tissues in The Cancer Genome Atlas clear cell, papillary, and chromophobe renal cell carcinoma datasets. CONCLUSIONS: These DNA methylation profiles provide insights into the etiology of renal cell carcinoma and, most importantly, demonstrate clinically applicable biomarkers for use in early detection of kidney cancer.


Assuntos
Carcinoma de Células Renais/diagnóstico , Metilação de DNA/genética , Neoplasias Renais/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Feminino , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes
2.
Cancer Res ; 69(1): 253-61, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19118010

RESUMO

Activation of c-Met signaling and beta-catenin mutations are frequent genetic events observed in liver cancer development. Recently, we demonstrated that activated beta-catenin can cooperate with c-Met to induce liver cancer formation in a mouse model. Cyclin D1 (CCND1) is an important cell cycle regulator that is considered to be a downstream target of beta-catenin. To determine the importance of CCND1 as a mediator of c-Met- and beta-catenin-induced hepatocarcinogenesis, we investigated the genetic interactions between CCND1, beta-catenin, and c-Met in liver cancer development using mouse models. We coexpressed CCND1 with c-Met in mice and found CCND1 to cooperate with c-Met to promote liver cancer formation. Tumors induced by CCND1/c-Met had a longer latency period, formed at a lower frequency, and seemed to be more benign compared with those induced by beta-catenin/c-Met. In addition, when activated beta-catenin and c-Met were coinjected into CCND1-null mice, liver tumors developed despite the absence of CCND1. Intriguingly, we observed a moderate accelerated tumor growth and increased tumor malignancy in these CCND1-null mice. Molecular analysis showed an up-regulation of cyclin D2 (CCND2) expression in CCND1-null tumor samples, indicating that CCND2 may replace CCND1 in hepatic tumorigenesis. Together, our results suggest that CCND1 functions as a mediator of beta-catenin during HCC pathogenesis, although other molecules may be required to fully propagate beta-catenin signaling. Moreover, our data suggest that CCND1 expression is not essential for liver tumor development induced by c-Met and beta-catenin.


Assuntos
Transformação Celular Neoplásica/genética , Ciclina D1/biossíntese , Neoplasias Hepáticas Experimentais/genética , Proteínas Proto-Oncogênicas c-met/genética , beta Catenina/genética , Animais , Transformação Celular Neoplásica/metabolismo , Ciclina D1/genética , Ciclina D2 , Ciclinas/biossíntese , Ciclinas/genética , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Hepáticas Experimentais/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-met/biossíntese , Transfecção , Regulação para Cima , beta Catenina/biossíntese
3.
Phytochemistry ; 69(12): 2320-8, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18617197

RESUMO

2,7-Dihydroxycadalene and lacinilene C, sesquiterpenoid phytoalexins that accumulate at infection sites during the hypersensitive resistant response of cotton foliage to Xanthomonas campestris pv. malvacearum, have light-dependent toxicity toward host cells, as well as toward the bacterial pathogen. Adaxial epidermal cells surrounding and sometimes covering infection sites turn red. The red cells exhibited 3-4-fold higher absorption at the photoactivating wavelengths of sunlight than nearby colorless epidermal cells. Red epidermal cells protected underlying palisade mesophyll cells from the toxic effects of 2,7-dihydroxycadalene plus sunlight, indicating a role for epidermal pigments in protecting living cells that surround infection sites from toxic effects of the plant's own phytoalexins. A semi-quantitative survey of UV-absorbing substances extracted from epidermal strips from inoculated and mock-inoculated cotyledons indicated that the principal increase in capacity to absorb the photoactivating wavelengths was due to a red anthocyanin and a yellow flavonol, which were identified as cyanidin-3-O-beta-glucoside and quercetin-3-O-beta-glucoside, respectively.


Assuntos
Flavonoides/fisiologia , Gossypium/fisiologia , Folhas de Planta/fisiologia , Luz Solar , Terpenos/toxicidade , Gossypium/efeitos dos fármacos , Gossypium/efeitos da radiação , Luz , Pigmentação/efeitos dos fármacos , Doenças das Plantas , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/efeitos da radiação , Sesquiterpenos , Espectrofotometria , Terpenos/química , Fitoalexinas
4.
Hepatology ; 47(4): 1200-10, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18214995

RESUMO

UNLABELLED: Hepatocellular carcinoma (HCC) is 1 of the leading causes of cancer-related deaths worldwide, yet the molecular genetics underlying this malignancy are still poorly understood. In our study, we applied statistical methods to correlate human HCC gene expression data obtained from complementary DNA (cDNA) microarrays and corresponding DNA copy number variation data obtained from array-based comparative genomic hybridization. We have thus identified 76 genes that are up-regulated and show frequent DNA copy number gain, and 37 genes that are down-regulated and show frequent DNA copy loss in human HCC samples. Among these down-regulated genes is Sprouty2 (Spry2), a known inhibitor of receptor tyrosine kinases. We investigated the potential role of Spry2 in HCC by expressing dominant negative Spry2 (Spry2Y55F) and activated beta-catenin (DeltaN90-beta-catenin) in the mouse liver through hydrodynamic injection and sleeping beauty-mediated somatic integration. When stably expressed in mouse hepatocytes, Spry2Y55F cooperates with DeltaN90-beta-catenin to confer a neoplastic phenotype in mice. Tumor cells show high levels of expression of phospho-extracellular signal-regulated kinase (ERK), as well as deregulation of genes involved in cell proliferation, apoptosis, and angiogenesis. CONCLUSION: We identified a set of candidate oncogenes and tumor suppressor genes for human HCC. Our study provides evidence that inhibition of Spry activity cooperates with other oncogenes to promote liver cancer in mouse models, and Spry2 may function as a candidate tumor suppressor for HCC development in vivo. In addition, we demonstrate that the integration of genomic analysis and in vivo transfection is a powerful tool to identify genes that are important during hepatic carcinogenesis.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Dosagem de Genes , Expressão Gênica , Perfilação da Expressão Gênica , Genes Supressores de Tumor , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Camundongos , Oncogenes , Proteínas Serina-Treonina Quinases , Transfecção , Proteínas Supressoras de Tumor/genética , beta Catenina/metabolismo
5.
Hum Pathol ; 38(11): 1621-7, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17651785

RESUMO

Recently, the functional role of Jun activation domain binding protein 1 (Jab1) as a putative novel oncogene in hepatocellular carcinoma (HCC) has been postulated. We show that expression of p27(Kip1), a negative cell cycle regulator, correlates inversely with Jab1 expression in HCC (P = .014). We observed nuclear Jab1 expression in 57% (55/97) and p27(Kip1) expression in 32% (31/97) of HCCs. Neither Jab1 nor p27(Kip1) nor inverse Jab1 and p27(Kip1) expression correlated with clinicopathological parameters. However, HCCs lacking p27(Kip1) with increased proliferative activity were frequently found to express Jab1 (P = .048). Normal liver tissue, cirrhosis, and tumor-like lesions (focal nodular hyperplasia, dysplastic nodules in cirrhotic liver) showed no significant Jab1 expression. In transfection studies in the hepatoma cell line Huh 7, Jab1 overexpression resulted in reduced p27(Kip1) protein levels. We conclude that Jab1 expression may lead to down-regulation of the negative cell cycle regulator p27(Kip1), pointing to a possible mechanism that promotes hepatocarcinogenesis.


Assuntos
Carcinoma Hepatocelular/patologia , Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Neoplasias Hepáticas/patologia , Peptídeo Hidrolases/biossíntese , Complexo do Signalossomo COP9 , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Expressão Gênica , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular , Antígeno Ki-67/biossíntese , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo
6.
Genome ; 49(4): 306-19, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16699550

RESUMO

In an effort to expand the Gossypium hirsutum L. (cotton) expressed sequence tag (EST) database, ESTs representing a variety of tissues and treatments were sequenced. Assembly of these sequences with ESTs already in the EST database (dbEST, GenBank) identified 9675 cotton sequences not present in GenBank. Statistical analysis of a subset of these ESTs identified genes likely differentially expressed in stems, cotyledons, and drought-stressed tissues. Annotation of the differentially expressed cDNAs tentatively identified genes involved in lignin metabolism, starch biosynthesis and stress response, consistent with pathways likely to be active in the tissues under investigation. Simple sequence repeats (SSRs) were identified among these ESTs, and an inexpensive method was developed to screen genomic DNA for the presence of these SSRs. At least 69 SSRs potentially useful in mapping were identified. Selected amplified SSRs were isolated and sequenced. The sequences corresponded to the EST containing the SSRs, confirming that these SSRs will potentially map the gene represented by the EST. The ESTs containing SSRs were annotated to help identify the genes that may be mapped using these markers.


Assuntos
Etiquetas de Sequências Expressas/química , Marcadores Genéticos , Gossypium/genética , Repetições Minissatélites/genética , Estruturas Vegetais/genética , Mapeamento Cromossômico/métodos , Sequência Consenso/genética , Bases de Dados de Ácidos Nucleicos , Biblioteca Gênica , Genes de Plantas , Ligação Genética , Estruturas Vegetais/microbiologia , Polimorfismo Genético , Xanthomonas campestris/patogenicidade
7.
Cancer Biol Ther ; 5(1): 111-7, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16397407

RESUMO

Hepatocellular carcinoma (HCC) is the fourth most common malignancy and one of the leading causes of death world wide. Signaling pathways important for tumor initiation and progression in HCC are poorly understood. Hedgehog signaling (Hh) has been implicated in multiple events during development and has also been proposed to play important roles in several tumor types. However, it remains unclear whether this pathway is activated in HCC. Here, we report the detection of transcripts for hedgehog pathway signaling molecules in both HCC cell lines and tumor samples. Quantitative real-time RT-PCR also revealed the decreased expression of Hip1 and increased expression of Gli1 and smo in HCC samples compared with nontumor liver tissues. Blocking the hedgehog pathway with cyclopamine inhibited proliferation, induced apoptosis and repressed c-Myc and cyclin D expression in a subset of HCC cell lines. The study therefore, for the first time, provides evidence that hedgehog signaling may be activated in some HCC tumors. The results also indicate that the hedgehog pathway may be a new candidate for therapeutic targeting in HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Oncogênicas/metabolismo , Receptores de Superfície Celular/metabolismo , Transativadores/metabolismo , Apoptose , Carcinoma Hepatocelular/genética , Proliferação de Células/efeitos dos fármacos , Ciclina D , Ciclinas/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas Hedgehog , Humanos , Neoplasias Hepáticas/genética , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/genética , Receptores Patched , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transativadores/antagonistas & inibidores , Transativadores/genética , Transcrição Gênica , Alcaloides de Veratrum/farmacologia , Proteína GLI1 em Dedos de Zinco
8.
Carcinogenesis ; 26(12): 2050-7, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16000397

RESUMO

Hepatocellular carcinoma (HCC) is one of the major malignancies worldwide. We have previously characterized global gene expression patterns in HCC using microarrays. Here, we report the analysis of genomic DNA copy number among 49 HCC samples using BAC array-based comparative genomic hybridization (CGH). We observed recurrent and characteristic chromosomal aberrations, including frequent DNA copy number gains of 1q, 6p, 8q and 20q, and losses of 4q, 8p, 13q, 16q and 17p. We correlated gene expression with array CGH data, and identified a set of genes whose expression levels correlated with common chromosomal aberrations in HCC. Especially, we noticed that high expression of Jab1 in HCC significantly correlated with DNA copy number gain at 8q. Quantitative microsatellite analysis further confirmed DNA copy number gain at the Jab1 locus. Overexpression of Jab1 in HCC was also validated using real-time RT-PCR, and Jab1 protein levels were studied by immunohistochemistry on tissue microarrays. Functional analysis in HCC cell lines demonstrated that Jab1 may regulate HCC cell proliferation, thereby having a potential role in HCC development. In conclusion, this study shows that array-based CGH provides high resolution mapping of chromosomal aberrations in HCC, and demonstrates the feasibility of correlating array CGH data with gene expression data to identify novel oncogenes and tumor suppressor genes.


Assuntos
Carcinoma Hepatocelular/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 8/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Hepáticas/genética , Análise em Microsséries , Peptídeo Hidrolases/genética , Complexo do Signalossomo COP9 , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , Cromossomos Artificiais Bacterianos , Amplificação de Genes , Dosagem de Genes , Humanos , Técnicas Imunoenzimáticas , Hibridização in Situ Fluorescente , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Cariotipagem , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Repetições de Microssatélites , Recidiva Local de Neoplasia , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Células Tumorais Cultivadas
9.
Oncogene ; 24(23): 3737-47, 2005 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-15735714

RESUMO

Hepatocellular carcinoma (HCC) is one of the major causes of cancer deaths worldwide. New diagnostic and therapeutic options are needed for more effective and early detection and treatment of this malignancy. We identified 703 genes that are highly expressed in HCC using DNA microarrays, and further characterized them in order to uncover novel tumor markers, oncogenes, and therapeutic targets for HCC. Using Gene Ontology annotations, genes with functions related to cell proliferation and cell cycle, chromatin, repair, and transcription were found to be significantly enriched in this list of highly expressed genes. We also identified a set of genes that encode secreted (e.g. GPC3, LCN2, and DKK1) or membrane-bound proteins (e.g. GPC3, IGSF1, and PSK-1), which may be attractive candidates for the diagnosis of HCC. A significant enrichment of genes highly expressed in HCC was found on chromosomes 1q, 6p, 8q, and 20q, and we also identified chromosomal clusters of genes highly expressed in HCC. The microarray analyses were validated by RT-PCR and PCR. This approach of integrating other biological information with gene expression in the analysis helps select aberrantly expressed genes in HCC that may be further studied for their diagnostic or therapeutic utility.


Assuntos
Carcinoma Hepatocelular/genética , Perfilação da Expressão Gênica , Neoplasias Hepáticas/genética , Biomarcadores Tumorais/análise , Humanos , Hibridização In Situ , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA