Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1150909, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37615019

RESUMO

Introduction: Waterlogging is a major stress that severely affects onion cultivation worldwide, and developing stress-tolerant varieties could be a valuable measure for overcoming its adverse effects. Gathering information regarding the molecular mechanisms and gene expression patterns of waterlogging-tolerant and sensitive genotypes is an effective method for improving stress tolerance in onions. To date, the waterlogging tolerance-governing molecular mechanism in onions is unknown. Methods: This study identified the differentially expressed genes (DEGs) through transcriptome analysis in leaf tissue of two onion genotypes (Acc. 1666; tolerant and W-344; sensitive) presenting contrasting responses to waterlogging stress. Results: Differential gene expression analysis revealed that in Acc. 1666, 1629 and 3271 genes were upregulated and downregulated, respectively. In W-344, 2134 and 1909 genes were upregulated and downregulated, respectively, under waterlogging stress. The proteins coded by these DEGs regulate several key biological processes to overcome waterlogging stress such as phytohormone production, antioxidant enzymes, programmed cell death, and energy production. The clusters of orthologous group pathway analysis revealed that DEGs contributed to the post-translational modification, energy production, and carbohydrate metabolism-related pathways under waterlogging stress. The enzyme assay demonstrated higher activity of antioxidant enzymes in Acc. 1666 than in W-344. The differential expression of waterlogging tolerance related genes, such as those related to antioxidant enzymes, phytohormone biosynthesis, carbohydrate metabolism, and transcriptional factors, suggested that significant fine reprogramming of gene expression occurs in response to waterlogging stress in onion. A few genes such as ADH, PDC, PEP carboxylase, WRKY22, and Respiratory burst oxidase D were exclusively upregulated in Acc. 1666. Discussion: The molecular information about DEGs identified in the present study would be valuable for improving stress tolerance and for developing waterlogging tolerant onion varieties.

2.
Microbiol Res ; 274: 127422, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37301080

RESUMO

Prodigiosin pigment is a secondary metabolite produced by many bacterial species and is known for its medicinal properties. A few of these prodigiosin-producing bacteria are also reported to be entomopathogenic. It is intriguing to unravel the role of prodigiosin in insecticidal activities and its mode of action. In this study, we have shown the production and characterization of prodigiosin from the Serratia rubidaea MJ 24 isolated from the soil of the Western Ghats, India. Further, we assessed the effect of this pigment on the lepidopteran agricultural pest, Helicoverpa armigera. Prodigiosin-fed H. armigera indicated defective development of insect growth upon treatment. Due to defective early development, about 50% mortality and 40% reduction in body weight were observed in insects fed on a 500 ppm prodigiosin-containing diet. The transcriptomic analysis of these insects indicated significant dysregulation of Juvenile hormone synthesis and response related genes. In addition, dopamine related processes and their resultant melanization and sclerotization processes were also found to be affected. The changes in the expression levels of the key transcripts were further validated using real-time quantitative PCR. The metabolome data confirmed the developmental dysregulation of precursors and products of differentially regulated genes due to prodigiosin. Therefore, the corroborated data suggests that prodigiosin majorly affects H. armigera development through dysregulation of the Juvenile hormone-dopamine system and can be considered as a bioactive scaffold to design insect-pest management compounds. This study provides the first report of in-depth analysis of insecticidal system dynamics in H. armigera insects upon prodigiosin feeding via gene expression and metabolic change via omics approach.


Assuntos
Inseticidas , Mariposas , Animais , Prodigiosina/farmacologia , Prodigiosina/metabolismo , Dopamina/metabolismo , Dopamina/farmacologia , Serratia/genética , Mariposas/microbiologia , Inseticidas/metabolismo , Larva/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA