Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35164275

RESUMO

Measurement of the nitric oxide (NO) concentration in living cells in the physiological nanomolar range is crucial in understanding NO biochemical functions, as well as in characterizing the efficiency and kinetics of NO delivery by NO-releasing drugs. Here, we show that fluorescence correlation spectroscopy (FCS) is perfectly suited for these purposes, due to its sensitivity, selectivity, and spatial resolution. Using the fluorescent indicators, diaminofluoresceins (DAFs), and FCS, we measured the NO concentrations in NO-producing living human primary endothelial cells, as well as NO delivery kinetics, by an external NO donor to the immortal human epithelial living cells. Due to the high spatial resolution of FCS, the NO concentration in different parts of the cells were also measured. The detection of nitric oxide by means of diaminofluoresceins is much more efficient and faster in living cells than in PBS solutions, even though the conversion to the fluorescent form is a multi-step reaction.


Assuntos
Óxido Nítrico/análise , Espectrometria de Fluorescência/métodos , Sobrevivência Celular , Corantes Fluorescentes/análise , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Imagem Óptica
2.
Mater Sci Eng C Mater Biol Appl ; 118: 111507, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33255065

RESUMO

In this work, we show synthesis that leads to thermoreponsive poly-N-isopropyl acrylamide (pNIPAM) nanogels with sizes below 100 nm, irrespectively of the surfactant to crosslinker ratio. We also show that in many environments the temperature induced pNIPAM collapse at Lower Critical Solution Temperature (LCST) of 32.5 °C is accompanied by gel nanoparticles' aggregation. Thus, the proper information on the nanoparticle (NP) structure and deswelling can be obtained only if the routinely measured hydrodynamic radius is supplemented by information on the molecular weight, which can be obtained from the intensity of scattered light. We measured the dynamics and reversibility of the deswelling and subsequent aggregation processes. Furthermore, we show that the highly concentrated pNIPAM gel NPs reversibly form bulk hydrogel networks of varied interconnected porous structure. We show, that in case of drying pNIPAM gel NPs above the LCST, it is possible to obtain films with 20-fold increase in storage modulus (G') compared to hydrogel networks measured at room temperature. They exhibit temperature hysteresis behavior around LCST of 32.5 °C similar to pNIPAM films. Finally, we show that these hydrogel films, lead to extended proliferation of cells across three different types: fibroblast, endothelial and cancer cells. Additionally, none of the films exhibited any cytotoxic effects. Our study brings new insights into physicochemical characterization of pNIPAM gel NPs and networks behavior in realistic conditions of in vitro measurements, especially by means of dynamic light scattering as well as final unique properties of both gel NPs and formed porous films for possible tissue engineering applications.


Assuntos
Resinas Acrílicas , Nanopartículas , Hidrogéis , Nanopartículas/toxicidade , Temperatura
3.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt A): 1358-1371, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28866388

RESUMO

Fish otoliths are calcium carbonate biominerals that are involved in hearing and balance sensing. An organic matrix plays a crucial role in their formation. Otolith matrix macromolecule-64 (OMM-64) is a highly acidic, calcium-binding protein (CBP) found in rainbow trout otoliths. It is a component of high-molecular-weight aggregates, which influence the size, shape and polymorph of calcium carbonate in vitro. In this study, a protocol for the efficient expression and purification of OMM-64 was developed. For the first time, the complete structural characteristics of OMM-64 were described. Various biophysical methods were combined to show that OMM-64 occurs as an intrinsically disordered monomer. Under denaturing conditions (pH, temperature) OMM-64 exhibits folding propensity. It was determined that OMM-64 binds approximately 61 calcium ions with millimolar affinity. The folding-unfolding experiments showed that calcium ions induced the collapse of OMM-64. The effect of other counter ions present in trout endolymph on OMM-64 conformational changes was studied. The significance of disordered properties of OMM-64 and the possible function of this protein is discussed.


Assuntos
Proteínas de Ligação ao Cálcio/química , Cálcio/química , Proteínas da Matriz Extracelular/química , Proteínas de Peixes/química , Proteínas Intrinsicamente Desordenadas/química , Membrana dos Otólitos/química , Animais , Sítios de Ligação , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Oncorhynchus mykiss/fisiologia , Membrana dos Otólitos/metabolismo , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Desdobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
4.
J Chem Phys ; 146(8): 084506, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28249427

RESUMO

In this work, we describe new experimental setups for Fluorescence Correlation Spectroscopy (FCS) where a long working distance objective is used. Using these setups, FCS measurements in a broad temperature range for a small sample volume of about 50 µl can be performed. The use of specially designed cells and a dry long working distance objective was essential for avoiding temperature gradients in the sample. The performance of the new setups and a traditional FCS setup with immersion objectives is compared. The FCS data in combination with the Stokes-Einstein (SE) relation were used to obtain the values of the nanoviscosity of a fluid. We show for selected molecular van der Waals supercooled liquids that despite the fact that in these systems, a characteristic length scale can be defined, the nanoviscosity obtained from FCS is in a very good agreement with the macroscopic (rheometric) viscosity of the sample in a broad temperature range. This result corroborates the applicability of the SE relation to supercooled liquids at temperatures above 1.2 Tg. We also show that the temperature dependent size of thermoresponsive microgel particles can be determined by FCS using the designed cells and a long working distance objective in a broader size range without a need to use the correction procedure since the size correction is proportional to the square of the ratio of the hydrodynamic radius to the confocal volume size.

5.
Langmuir ; 32(10): 2482-91, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26894549

RESUMO

In some applications the dye distribution within fluorescently labeled nanoparticles and its stability over long periods of time are important issues. In this article we study numerically and experimentally the applicability of fluorescence correlation spectroscopy (FCS) to resolve such questions. When the size of fluorescently labeled particles is comparable to or larger than the confocal volume, the effective confocal volume seen in FCS experiments is increasing. Such an effect has already been studied for uniformly labeled spherical particles. In this work we analyze the form of the FCS correlation functions (CFs) for core-labeled and shell-labeled core-shell particles. For shell-labeled particles an additional fast decay was found both in simulations and in experiments on custom-made surface-labeled particles. Universal scaling of FCS correlation times based on the squared ratio of the labeled part radius of gyration to the Gaussian radius of the beam profile was found. Recipes based on the analysis of simulated CFs, proposed for interpretation of experimental results, were successfully applied to the FCS results on suspensions of large core-labeled and surface-labeled particles.

6.
Nanomaterials (Basel) ; 6(5)2016 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28335215

RESUMO

Recently, the use of mammalian target of rapamycin (mTOR) inhibitors, in particular rapamycin (Rp), has been suggested to improve the treatment of neurodegenerative diseases. However, as Rp is a strong immunosuppressant, specific delivery to the brain has been postulated to avoid systemic exposure. In this work, we fabricated new Rp loaded solid lipid nanoparticles (Rp-SLN) stabilized with polysorbate 80 (PS80), comparing two different methods and lipids. The formulations were characterized by differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), wide angle X-ray scattering (WAXS), cryo-transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS) and particle tracking. In vitro release and short-term stability were assessed. Biological behavior of Rp-SLN was tested in SH-SY5Y neuroblastoma cells. The inhibition of mTOR complex 1 (mTORC1) was evaluated over time by a pulse-chase study compared to free Rp and Rp nanocrystals. Compritol Rp-SLN resulted more stable and possessing proper size and surface properties with respect to cetyl palmitate Rp-SLN. Rapamycin was entrapped in an amorphous form in the solid lipid matrix that showed partial crystallinity with stable Lß, sub-Lα and Lß' arrangements. PS80 was stably anchored on particle surface. No drug release was observed over 24 h and Rp-SLN had a higher cell uptake and a more sustained effect over a week. The mTORC1 inhibition was higher with Rp-SLN. Overall, compritol Rp-SLN show suitable characteristics and stability to be considered for further investigation as Rp brain delivery system.

7.
Langmuir ; 31(24): 6681-7, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26033317

RESUMO

When fluorescence correlation spectroscopy (FCS) in combination with a confocal microscope is used to determine the hydrodynamic radius a of particles comparable to or larger than the linear size σ of the confocal volume of the microscope, a correction must be used that depends on the a(2)/σ(2) ratio and the distribution of the dye within the particle. Here we present the experimental validation of the theoretically predicted approximate correction necessary for appropriate measurements of the size of uniformly fluorescently labeled spheres of radius comparable to the size of the confocal volume. We also test the approximate correction formula for different ranges of the a/σ ratio and propose a simple procedure to obtain the correct nanoparticle size from such a measurement.


Assuntos
Nanopartículas/química , Hidrodinâmica , Microscopia Confocal , Tamanho da Partícula , Espectrometria de Fluorescência
8.
Acta Biochim Pol ; 62(2): 311-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25980357

RESUMO

Polymeric nanoparticles based on poly-N-isopropylacrylamide (pNiPAM NPs) and their bio-medical applications have been widely investigated in recent years. These tunable nanoparticles are considered to be great candidates for drug delivery systems, biosensors and bioanalytical devices. Thus, the biocompatibility and toxicity of these nanoparticles is clearly a crucial issue. In this work, the cytotoxicity of thermo-responsive pNiPAM nanoparticles was studied, followed by a detailed analysis of the NPs morphology in growing cell cultures and their 3D structure. Cytotoxic examination was conducted for two cell cultures - HeLa (cervical cancer cell line) and HeK293 (human embryonic kidney cell line), employing MTT (3-4, 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide) assay and viability tests. We used Cryo-SEM (scanning electron microscopy) and fluorescence microscopy (IN Cell Analyzer) in order to investigate the morphological structure of the polymer network. We show that pNiPAM nanoparticles do not exhibit any cytotoxicity effects on the investigated cell lines. Additionally, we report that the pNiPAM nanoparticle based scaffold promotes cell growth.


Assuntos
Acrilamidas/química , Materiais Biocompatíveis , Nanopartículas/química , Alicerces Teciduais , Sobrevivência Celular , Células HEK293/efeitos dos fármacos , Células HeLa/efeitos dos fármacos , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Nanopartículas/toxicidade
9.
J Chem Phys ; 141(12): 124505, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25273449

RESUMO

Using the Rogers-Young (RY) integral equation scheme for the static pair correlation functions combined with the liquid-phase Hansen-Verlet freezing rule, we study the generic behavior of the radial distribution function and static structure factor of monodisperse charge-stabilized suspensions with Yukawa-type repulsive particle interactions at freezing. In a related article, labeled Paper I [J. Gapinski, G. Nägele, and A. Patkowski, J. Chem. Phys. 136, 024507 (2012)], this hybrid method was used to determine two-parameter freezing lines for experimentally controllable parameters, characteristic of suspensions of charged silica spheres in dimethylformamide. A universal scaling of the RY radial distribution function maximum is shown to apply to the liquid-bcc and liquid-fcc segments of the universal freezing line. A thorough analysis is made of the behavior of characteristic distances and wavenumbers, next-neighbor particle coordination numbers, osmotic compressibility factor, and the Ravaché-Mountain-Streett minimum-maximum radial distribution function ratio.


Assuntos
Coloides/química , Congelamento , Algoritmos , Modelos Químicos , Tamanho da Partícula
10.
Langmuir ; 30(29): 8945-55, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-24992167

RESUMO

Fluorescence correlation spectroscopy (FCS) is frequently used to measure the self-diffusion coefficient of fluorescently labeled probes in solutions, complex media, and living cells. In a standard experiment water immersion objectives and window thickness in the range of 0.13-0.19 mm are used. We show that successful FCS measurements can be performed using samples of different refractive index placed in cells having windows of different thickness, even much thicker than nominally allowed. Different water, oil, and silicon oil immersion as well as long working distance dry objectives, equipped with the correction collar, were tested and compared. We demonstrate that the requirements for FCS experiments are less stringent than those for high resolution confocal imaging and reliable relative FCS measurements can be performed even beyond the compensation range of the objectives. All these features open new possibilities for construction of custom-made high temperature and high pressure cells for FCS.


Assuntos
Corantes Fluorescentes/química , Espectrometria de Fluorescência/instrumentação , Difusão , Refratometria , Soluções , Espectrometria de Fluorescência/métodos
11.
J Chem Phys ; 136(2): 024507, 2012 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22260603

RESUMO

Using the Rogers-Young (RY) integral equation scheme for the static structure factor combined with the one-phase Hansen-Verlet (HV) freezing rule, we study the equilibrium structure and two-parameter freezing lines of colloidal particles with Yukawa-type pair interactions representing charge-stabilized silica spheres suspended in dimethylformamide (DMF). Results are presented for a vast range of concentrations, salinities and effective charges covering particles with masked excluded-volume interactions. The freezing lines were obtained for the low-charge and high-charge solutions of the static structure factor, for various two-parameter sets of experimentally accessible system parameters. All RY-HV based freezing lines can be mapped on a universal fluid-solid coexistence line in good agreement with computer simulation predictions. The RY-HV calculations extend the freezing lines obtained in earlier simulations to a broader parameter range. The experimentally observed fluid-bcc-fluid reentrant transition of charged silica spheres in DMF can be explained using the freezing lines obtained in this work.


Assuntos
Algoritmos , Dimetilformamida/química , Congelamento , Dióxido de Silício/química , Coloides/química , Simulação por Computador
12.
Nano Lett ; 11(5): 2157-63, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21513331

RESUMO

We present a scaling formula for size-dependent viscosity coefficients for proteins, polymers, and fluorescent dyes diffusing in complex liquids. The formula was used to analyze the mobilities of probes of different sizes in HeLa and Swiss 3T3 mammalian cells. This analysis unveils in the cytoplasm two length scales: (i) the correlation length ξ (approximately 5 nm in HeLa and 7 nm in Swiss 3T3 cells) and (ii) the limiting length scale that marks the crossover between nano- and macroscale viscosity (approximately 86 nm in HeLa and 30 nm in Swiss 3T3 cells). During motion, probes smaller than ξ experienced matrix viscosity: η(matrix) ≈ 2.0 mPa·s for HeLa and 0.88 mPa·s for Swiss 3T3 cells. Probes much larger than the limiting length scale experienced macroscopic viscosity, η(macro) ≈ 4.4 × 10(-2) and 2.4 × 10(-2) Pa·s for HeLa and Swiss 3T3 cells, respectively. Our results are persistent for the lengths scales from 0.14 nm to a few hundred nanometers.


Assuntos
Citoplasma/metabolismo , Nanotecnologia/métodos , Células 3T3 , Animais , Linhagem Celular , Difusão , Células HeLa , Humanos , Camundongos , Micelas , Peso Molecular , Nanopartículas/química , Polímeros/química , Poliestirenos/química , Pressão , Viscosidade
13.
Langmuir ; 26(12): 9304-14, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20345164

RESUMO

The hexaethylene glycol monododecyl ether (C(12)E(6)) micelles at concentrations up to 10% have been studied in their isotropic phase (10-48 degrees C) by means of small angle neutron scattering (SANS) and photon correlation spectroscopy (PCS). The SANS data obtained at low temperatures could be unequivocally interpreted as a result of scattering from a suspension of compact globular micelles with the shape of a triaxial ellipsoid or a short end-capped elliptical rod. Different models have been applied to analyze the SANS data obtained at higher temperatures: (i) elongated rod-like micelles with purely sterical interactions, (ii) compact globular micelles with a weak attractive potential, and (iii) globular micelles influenced by the critical phenomena in the whole temperature range studied. The good quality of the experimental data indicated model (i) as the best fit for our data. The diffusion coefficients obtained from the PCS measurements have been compared to the diffusion coefficients calculated for the rod-like micelles--results of the SANS data analysis. A good agreement was achieved using the solvent viscosity, in agreement with the theoretical predictions for sterically interacting globular colloidal particles. Finally, the SANS results obtained at 24 degrees C were compared to the micelle self-diffusion coefficients previously measured by means of fluorescence correlation spectroscopy (FCS) at this temperature. The good agreement obtained after scaling the data with solution viscosity supports the validity of the generalized Stokes-Einstein relation in sterically interacting systems: the product of the colloidal particle self-diffusion coefficient and the macroscopic viscosity remains constant in a broad range of concentrations. It has been concluded that the FCS technique in combination with simple viscosity measurements might serve as a tool for estimating the micellar size and shape.

14.
J Chem Phys ; 132(5): 054510, 2010 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-20136325

RESUMO

We discuss the generic behavior of the hydrodynamic function H(q) and diffusion function D(q) characterizing the short-time diffusion in suspensions of charge-stabilized colloidal spheres, by covering the whole fluid regime. Special focus is given to the behavior of these functions at the freezing transition specified by the Hansen-Verlet freezing rule. Results are presented in dependence on scattering wavenumber q, effective particle charge, volume fraction, salt concentration, and particle size, by considering both the low-charge and high-charge branch solutions of static structure factors. The existence of two charge branches leads to the prediction of a re-entrant melting-freezing-melting transition for increasing particle concentration at very low salinity. A universal limiting contour line is derived for the principal peak height value of H(q), independent of particle charge and diameter, and concentration and salinity, which separates the fluid from the fluid-solid coexistence region. This line is only weakly dependent on the value of the structure factor peak height entering the Hansen-Verlet rule. A dynamic freezing criterion is derived in terms of the short-time cage diffusion coefficient, a quantity easily measurable in a scattering experiment. The higher-dimensional parameter scans underlying this study make use of the fast and highly efficient deltagamma-scheme in conjunction with the analytic rescaled mean spherical approximation input for the static structure factor. Our results constitute a comprehensive database useful to researchers performing dynamic scattering experiments on charge-stabilized dispersions.

15.
Phys Chem Chem Phys ; 11(40): 9025-32, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19812821

RESUMO

We measured the viscosity of poly(ethylene glycol) (PEG 6000, 12,000, 20,000) in water using capillary electrophoresis and fluorescence correlation spectroscopy with nanoscopic probes of different diameters (from 1.7 to 114 nm). For a probe of diameter smaller than the radius of gyration of PEG (e.g. rhodamine B or lyzozyme) the measured nanoviscosity was orders of magnitude smaller than the macroviscosity. For sizes equal to (or larger than) the polymer radius of gyration, macroscopic value of viscosity was measured. A mathematical relation for macro and nanoviscosity was found as a function of PEG radius of gyration, R(g), correlation length in semi-dilute solution, xi, and probe size, R. For R < R(g), the nanoviscosity (normalized by water viscosity) is given by exp(b(R/xi)a), and for R > R(g), both nano and macroviscosity follow the same curve, exp(b(R/xi)a), where a and b are two constants close to unity. This mathematical relation was shown to equally well describe rhodamine (of size 1.7 nm) in PEG 20,000 and the macroviscosity of PEG 8,000,000, whose radius of gyration exceeds 200 nm. Additionally, for the smallest probes (rhodamine B and lysozyme) we have verified, using capillary electrophoresis and fluorescence correlation spectroscopy, that the Stokes-Einstein (SE) relation holds, providing that we use a size-dependent viscosity in the formula. The SE relation is correct even in PEG solutions of very high viscosity (three orders of magnitude larger than that of water).


Assuntos
Polietilenoglicóis/química , Animais , Bovinos , Eletroforese Capilar , Nanotecnologia , Soluções , Espectrometria de Fluorescência , Viscosidade
16.
J Phys Chem B ; 110(51): 25593-7, 2006 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-17181192

RESUMO

Although water is the chief component of living cells, food, and personal care products, the supramolecular components make their viscosity larger than that of water by several orders of magnitude. Using fluorescence correlation spectroscopy (FCS), photon correlation spectroscopy (PCS), NMR, and rheology data, we show how the viscosity changes from the value for water at the molecular scale to the large macroviscosity. We determined the viscosity experienced by nanoprobes (of sizes from 0.28 to 190 nm) in aqueous micellar solution of hexaethylene-glycol-monododecyl-ether (in a range of concentration from 0.1% w/w to 35% w/w) and identified a clear crossover at the length scale of 17 +/- 2 nm (slightly larger than persistence length of micelles) at which viscosity acquires its macroscopic value. The sharp dependence of the viscosity coefficients on the size of the probe in the nanoregime has important consequences for diffusion-limited reactions in crowded environments (e.g., living cells).

17.
Phys Rev Lett ; 96(13): 138303, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16712043

RESUMO

In this joint experimental-theoretical work we study hydrodynamic interaction effects in dense suspensions of charged colloidal spheres. Using x-ray photon correlation spectroscopy we have determined the hydrodynamic function H(q), for a varying range of electrosteric repulsion. We show that H(q) can be quantitatively described by means of a novel Stokesian dynamics simulation method for charged Brownian spheres, and by a modification of a many-body theory developed originally by Beenakker and Mazur. Very importantly, we can explain the behavior of H(q) for strongly correlated particles without resorting to the controversial concept of hydrodynamic screening, as was attempted in earlier work by Riese [Phys. Rev. Lett. 85, 5460 (2000)].

18.
J Phys Chem B ; 110(14): 7367-73, 2006 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-16599511

RESUMO

Small proteins move in crowded cell compartments by anomalous diffusion. In many of them, e.g., the endoplasmic reticulum, the proteins move between lipid membranes in the aqueous lumen. Molecular crowding in vitro offers a systematic way to study anomalous and normal diffusion in a well controlled environment not accessible in vivo. We prepared a crowded environment in vitro consisting of hexaethylene glycol monododecyl ether (C(12)E(6)) nonionic surfactant and water and observed lysozyme diffusion between elongated micelles. We have fitted the data obtained in fluorescence correlation spectroscopy using an anomalous diffusion model and a two-component normal diffusion model. For a small concentration of surfactant (below 4 wt %) the data can be fitted by single-component normal diffusion. For larger concentrations the normal diffusion fit gave two components: one very slow and one fast. The amplitude of the slow component grows with C(12)E(6) concentration. The ratio of diffusion coefficients (slow to fast) is on the order of 0.1 for all concentrations of surfactant in the solution. The fast diffusion is due to free proteins while the slow one is due to the protein-micelle complexes. The protein-micelle interaction is weak since even in a highly concentrated solution (35% of C(12)E(6)) the amplitude of the slow mode is only 10%, despite the fact that the average distance between the micelles is the same as the size of the protein. The anomalous diffusion model gave the anomaly index (r(2)(t) approximately t(alpha)), alpha monotonically decreasing from alpha = 1 (at 4% surfactant) to alpha = 0.88 (at 37% surfactant). The fits for two-component normal diffusion and anomalous diffusion were of equally good quality, but the physical interpretation was only straightforward for the former.


Assuntos
Proteínas/química , Tensoativos/química , Soluções Tampão , Difusão , Elasticidade , Éteres , Glicóis , Micelas , Muramidase/química , Soluções , Espectrometria de Fluorescência , Termodinâmica , Água/química
19.
J Phys Chem B ; 109(8): 3594-605, 2005 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16851398

RESUMO

The effect of different ions on the formation and behavior of quadruplex structures of the human telomere sequence d(TTAGGG)(4) has been studied by photon correlation spectroscopy (PCS) and circular dichroism (CD). The saturation and melting curves obtained in the presence of K(+), Na(+), Rb(+), Li(+), Cs(+), and Sr(2+) ions were recorded by CD spectroscopy and indicated the formation of monomeric quadruplexes. Analysis of the saturation curves obtained at 2 degrees C has shown that the presence of a single Sr(2+) ion per oligomer is sufficient for the formation of a monomeric quadruplex of the DNA sequence studied. In the presence of SrCl(2) at a concentration of 50 mM, the formation of tetrameric quadruplexes has been detected. The effect of Sr(2+) ions on the formation of quadruplex structures by the human telomere sequence d(TTAGGG)(4) is stronger and different from that of the other ions tested. The paper also presents results of a study of electrostatic interactions in solution. The translation diffusion coefficients D(T) of the structures present in solution have been determined by photon correlation spectroscopy and the effective charges on the structures have been calculated by combining the experimental data with the results based on the coupled mode theory. Analysis of the melting points monitored by the CD method has permitted a determination of Deltan, the number of ions released in the process of thermal denaturation. All the results are in good agreement with the predictions based on the theory of polyelectrolytes. The effect of ions on the formation and behavior of quadruplex structures of the human telomere sequence d(TTAGGG)(4) has been studied by photon correlation spectroscopy and circular dichroism.


Assuntos
Dicroísmo Circular/métodos , DNA/química , Íons , Polimorfismo Genético , Análise Espectral/métodos , Telômero/ultraestrutura , Algoritmos , Humanos , Concentração de Íons de Hidrogênio , Modelos Estatísticos , Oligonucleotídeos/química , Fótons , Espalhamento de Radiação , Eletricidade Estática , Termodinâmica
20.
Acta Biochim Pol ; 51(4): 971-81, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15625569

RESUMO

The structure of the Tetrahymena thermophila telomeric sequence d(TGGGGT)(4) was studied by photon correlation spectroscopy (PCS) in aqueous solution in the presence of NaCl, KCl and SrCl(2). The sample studied was polydisperse in all conditions studied. Translational diffusion coefficients D(T) describing the diffusion modes observed were determined. On the basis of a comparison between the experimental D(T) values with those calculated assuming the bead model, two forms were identified as telomeric quadruplex structures: monomer and tetramer. In the presence of SrCl(2) formation of aggregates was observed, with a size that reached several micrometres. The relative weighted concentrations of the structures observed for different concentrations of a salt and DNA were determined. The results obtained in the presence of monovalent ions were qualitatively similar and could be presented in a coherent plot in which the concentration of salt was expressed by the number of ions per DNA molecule. A large number of ions per DNA molecule favoured tetramer formation while a small number favoured the monomer form. A structural phase transition from the monomer to the tetramer induced by a change in the number of ions per DNA molecule was observed. The main difference between the results for Na(+) and K(+) was a greater effectiveness of the K(+) ions in formation of tetramers. The effect of Sr(2+) ions on the structures formed was different than that of the monovalent ions. The results obtained in the presence of Sr(2+) could not be described as a function of the number of ions per DNA molecule.


Assuntos
Fótons , Potássio/química , Sódio/química , Análise Espectral/métodos , Estrôncio/química , Telômero/química , Tetrahymena thermophila/genética , Animais , Sequência de Bases , Cátions Bivalentes , Cátions Monovalentes , DNA/química , Quadruplex G , Modelos Químicos , Dados de Sequência Molecular , Soluções/química , Telômero/genética , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA