Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(35): 37408-37416, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39246469

RESUMO

The behavior of plasmonic antennas is influenced by a variety of factors, including their size, shape, and material. Even minor changes in the deposition parameters during the thin film preparation process may have a significant impact on the dielectric function of the film, and thus on the plasmonic properties of the resulting antenna. In this work, we deposited gold thin films with thicknesses of 20, 30, and 40 nm at various deposition rates using an ion-beam-assisted deposition. We evaluate their morphology and crystallography by atomic force microscopy, X-ray diffraction, and transmission electron microscopy. Next, we examined the ease of fabricating plasmonic antennas using focused-ion-beam lithography. Finally, we evaluate their plasmonic properties by electron energy loss spectroscopy measurements of individual antennas. Our results show that the optimal gold thin film for plasmonic antenna fabrication of a thickness of 20 and 30 nm should be deposited at the deposition rate of around 0.1 nm/s. The thicker 40 nm film should be deposited at a higher deposition rate like 0.3 nm/s.

2.
Adv Sci (Weinh) ; 11(2): e2302965, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37946710

RESUMO

Interactions between living cells and nanoparticles are extensively studied to enhance the delivery of therapeutics. Nanoparticles size, shape, stiffness, and surface charge are regarded as the main features able to control the fate of cell-nanoparticle interactions. However, the clinical translation of nanotherapies has so far been limited, and there is a need to better understand the biology of cell-nanoparticle interactions. This study investigates the role of cellular mechanosensitive components in cell-nanoparticle interactions. It is demonstrated that the genetic and pharmacologic inhibition of yes-associated protein (YAP), a key component of cancer cell mechanosensing apparatus and Hippo pathway effector, improves nanoparticle internalization in triple-negative breast cancer cells regardless of nanoparticle properties or substrate characteristics. This process occurs through YAP-dependent regulation of endocytic pathways, cell mechanics, and membrane organization. Hence, the study proposes targeting YAP may sensitize triple-negative breast cancer cells to chemotherapy and increase the selectivity of nanotherapy.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Transdução de Sinais/fisiologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas de Sinalização YAP
3.
Ultramicroscopy ; 246: 113666, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36599269

RESUMO

AFM microscopy from its nature produces outputs with certain distortions, inaccuracies and errors given by its physical principle. These distortions are more or less well studied and documented. Based on the nature of the individual distortions, different reconstruction and compensation filters have been developed to post-process the scanned images. This article presents an approach based on machine learning - the involved convolutional neural network learns from pairs of distorted images and the ground truth image and then it is able to process pairs of images of interest and produce a filtered image with the artifacts removed or at least suppressed. What is important in our approach is that the neural network is trained purely on synthetic data generated by a simulator of the inputs, based on an analytical description of the physical phenomena causing the distortions. The generator produces training samples involving various combinations of the distortions. The resulting trained network seems to be able to autonomously recognize the distortions present in the testing image (no knowledge of the distortions or any other human knowledge is provided at the test time) and apply the appropriate corrections. The experimental results show that not only is the new approach better or at least on par with conventional post-processing methods, but more importantly, it does not require any operator's input and works completely autonomously. The source codes of the training set generator and of the convolutional neural net model are made public, as well as an evaluation dataset of real captured AFM images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA