Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Vaccines (Basel) ; 11(12)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38140222

RESUMO

The recent introduction of foot-and-mouth disease (FMD) virus serotype O (O/EA-2 topotype) in Southern Africa has changed the epidemiology of the disease and vaccine requirements of the region. Commercial and subsistence cattle herds in Zambia were vaccinated with an FMD virus serotype O Manisa vaccine according to a double- or single-dose vaccination schedule. Heterologous antibody responses induced by this vaccine against a representative O/EA-2 virus from Zambia were determined. Virus neutralisation tests (VNTs) showed double-dosed cattle had a mean reciprocal log virus neutralisation titre of 2.02 (standard error [SE] = 0.16, n = 9) for commercial herds and 1.65 (SE = 0.17, n = 5) for subsistence herds 56 days after the first vaccination (dpv). Significantly lower mean titres were observed for single-dosed commercial herds (0.90, SE = 0.08, n = 9) and subsistence herds (1.15, SE = 0.18, n = 3) 56 dpv. A comparison of these results and those generated by solid-phase competitive ELISA (SPCE) tests showed a statistically significant positive correlation by Cohen's kappa coefficient. Therefore, SPCE might be used in assessing the immunogenicity of vaccines in place of VNT. Furthermore, for this vaccine and field strain, a vaccination regime employing a two-dose primary course and revaccination after 4-6 months is likely to be appropriate.

2.
Vaccines (Basel) ; 11(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38140247

RESUMO

Vaccination is widely used to control foot-and-mouth disease (FMD), but maternal antibodies may interfere with the response to vaccination in calves. This study, conducted on a regularly vaccinated Malaysian dairy farm, aimed to optimise the vaccination regime by measuring the in vitro neutralising virus antibody responses of 51 calves before and after vaccination with a one or two dose vaccination regime starting at 2-7 months old. The presence of maternal antibodies was associated with poor post-vaccination antibody responses after a single dose of vaccine in calves less than 6 months old. However, a second dose of vaccine given three weeks later, improved the antibody responses in all ages of calves. This confirms the view that in regularly vaccinated farms, some combination of delay and revaccination is needed to achieve effective immunization of calves. Sera from cows and pre-vaccinated calves neutralised homologous serotype A vaccine virus more strongly than a heterologous serotype A field virus, but this pattern was reversed in some calves after vaccination. The strength of heterologous responses in calves 49 days after first vaccination correlated to the amount of transferred maternal antibody, suggesting that pre-existing antibodies could have modulated the specificity of these active antibody responses. If confirmed, such an effect by pre-existing antibodies could have wider implications for broadening the coverage of FMD vaccine responses.

3.
Front Vet Sci ; 9: 1027006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532344

RESUMO

Serology is widely used to predict whether vaccinated individuals and populations will be protected against infectious diseases, including foot-and-mouth disease (FMD), which affects cloven-hoofed animals. Neutralising antibody titres to FMD challenge viruses correlate to protection against FMD, for vaccinated cattle that are infected with the same strain as in the vaccine (homologous protection). Similar relationships exist for cross-strain protection between different vaccine and challenge viruses, although much less data are available for these heterologous studies. Poor inter-laboratory reproducibility of the virus neutralisation test (VNT) also hampers comparisons between studies. Therefore, day-of-challenge sera (n = 180) were assembled from 13 previous FMD cross-protection experiments for serotypes O (n = 2), A (n = 10), and SAT 2 (n = 1). These were tested by VNT against the challenge viruses at the FMD FAO World Reference Laboratory (WRLFMD) and the titres were compared to challenge outcomes (protected or not). This dataset was combined with equivalent serology and protection data for 61 sera from four cross-protection experiments carried out at WRLFMD for serotypes O (n = 2), A (n = 1), and Asia 1 (n = 1). VNT results and protection outcomes were also analysed for a serotype O cross-protection experiment involving 39 cattle, where the sera were not available for retesting at WRLFMD. Three categories of association between heterologous neutralising antibody titre and heterologous protection were found (Group 1-3). The log10 reciprocal titres associated on average with 75% protection (with 95% credible limits) were: Group 1: 2.46 (2.11-2.97); Group 2: 1.67 (1.49-1.92); Group 3: 1.17 (1.06-1.30). Further cross-protection data are needed to understand the factors that underpin this variability and to develop more robust antibody thresholds. Establishing cut-off serological titres that can be used to score the adequacy of vaccine-induced immunity will facilitate the monitoring and thereby the performance of FMD vaccination in the field.

4.
Viruses ; 14(7)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35891476

RESUMO

Antibodies to the foot-and-mouth disease virus (FMDV) capsid induced by infection or vaccination can provide serotype-specific protection and be measured using virus neutralization tests and viral structural-protein (SP-)ELISAs. Separate tests are needed for each serotype, but cross-serotype reactions complicate serotyping. In this study, inter-serotypic responses were quantified for five SP-ELISA formats by testing 294 monovalent mainly bovine sera collected following infection, vaccination, or vaccination and infection with one of five serotypes of FMDV. Over half of the samples, representing all three immunization categories, scored positive for at least one heterologous serotype and some scored positive for all serotypes tested. A comparative approach to identifying the strongest reaction amongst serotypes O, A and Asia 1 improved the accuracy of serotyping to 73-100% depending on the serotype and test system, but this method will be undermined where animals have been infected and/or vaccinated with multiple FMDV serotypes. Preliminary studies with stabilized recombinant capsid antigens of serotypes O and A that do not expose internal epitopes showed reduced cross-reactivity, supporting the hypothesis that capsid integrity can affect the serotype-specificity of the SP-ELISAs. The residual cross-reactivity associated with capsid surface epitopes was consistent with the evidence of cross-serotype virus neutralization.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Anticorpos Antivirais , Proteínas do Capsídeo/genética , Bovinos , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos , Sorogrupo
5.
Transbound Emerg Dis ; 69(5): 3041-3046, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34331827

RESUMO

Livestock markets are considered vital parts of the agricultural economy, particularly in developing countries where livestock keeping contributes to both food security and economic stability. Animals from diverse sources are moved to markets, they mix while they are there and are subsequently redistributed over wide geographic areas. Consequently, markets provide an opportunity for targeted surveillance for circulating pathogens. This study investigated the use of environmental sampling at a live goat market in Nepal for the detection of foot-and-mouth disease virus (FMDV) and peste des petits ruminants virus (PPRV), both of which are endemic. Five visits to the market were carried out between November 2016 and April 2018, with FMDV RNA detected on four visits and PPRV RNA detected on all five visits. Overall, 4.1% of samples (nine out of 217) were positive for FMDV RNA and 60.8% (132 out of 217) were positive for PPRV RNA, though the proportion of positive samples varied amongst visits. These results demonstrate that non-invasive, environmental sampling methods have the potential to be used to detect circulation of high priority livestock diseases at a live animal market and, hence, to contribute to their surveillance and control.


Assuntos
Vírus da Febre Aftosa , Doenças das Cabras , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Animais , Vírus da Febre Aftosa/genética , Doenças das Cabras/diagnóstico , Doenças das Cabras/epidemiologia , Cabras , Nepal/epidemiologia , Peste dos Pequenos Ruminantes/diagnóstico , Peste dos Pequenos Ruminantes/epidemiologia , Vírus da Peste dos Pequenos Ruminantes/genética , RNA Viral/genética
6.
Front Vet Sci ; 9: 1029075, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590816

RESUMO

Antigen banks have been established to supply foot-and-mouth disease virus (FMDV) vaccines at short notice to respond to incursions or upsurges in cases of FMDV infection. Multiple vaccine strains are needed to protect against specific FMDV lineages that circulate within six viral serotypes that are unevenly distributed across the world. The optimal selection of distinct antigens held in a bank must carefully balance the desire to cover these risks with the costs of purchasing and maintaining vaccine antigens. PRAGMATIST is a semi-quantitative FMD vaccine strain selection tool combining three strands of evidence: (1) estimates of the risk of incursion from specific areas (source area score); (2) estimates of the relative prevalence of FMD viral lineages in each specific area (lineage distribution score); and (3) effectiveness of each vaccine against specific FMDV lineages based on laboratory vaccine matching tests (vaccine coverage score). The output is a vaccine score, which identifies vaccine strains that best address the threats, and consequently which are the highest priority for inclusion in vaccine antigen banks. In this paper, data used to populate PRAGMATIST are described, including the results from expert elicitations regarding FMD risk and viral lineage circulation, while vaccine coverage data is provided from vaccine matching tests performed at the WRLFMD between 2011 and 2021 (n = 2,150). These data were tailored to working examples for three hypothetical vaccine antigen bank perspectives (Europe, North America, and Australia). The results highlight the variation in the vaccine antigens required for storage in these different regions, dependent on risk. While the tool outputs are largely robust to uncertainty in the input parameters, variation in vaccine coverage score had the most noticeable impact on the estimated risk covered by each vaccine, particularly for vaccines that provide substantial risk coverage across several lineages.

7.
Viruses ; 13(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062811

RESUMO

It is well known that approximately 50% of cattle infected with foot-and-mouth disease (FMD) virus (FMDV) may become asymptomatic carrier (persistently infected) animals. Although transmission of FMDV from carrier cattle to naïve cattle has not been demonstrated experimentally, circumstantial evidence from field studies has linked FMDV-carrier cattle to cause subsequent outbreaks. Therefore, the asymptomatic carrier state complicates the control and eradication of FMD. Current serological diagnosis using tests for antibodies to the viral non-structural proteins (NSP-ELISA) are not sensitive enough to detect all carrier animals, if persistently infected after vaccination and do not distinguish between carriers and non-carriers. The specificity of the NSP ELISA may also be reduced after vaccination, in particular after multiple vaccination. FMDV-specific mucosal antibodies (IgA) are not produced in vaccinated cattle but are elevated transiently during the acute phase of infection and can be detected at a high level in cattle persistently infected with FMDV, irrespective of their vaccination status. Therefore, detection of IgA by ELISA may be considered a diagnostic alternative to RT-PCR for assessing FMDV persistent infection in ruminants in both vaccinated and unvaccinated infected populations. This study reports on the development and validation of a new mucosal IgA ELISA for the detection of carrier animals using nasal, saliva, and oro-pharyngeal fluid (OPF) samples. The diagnostic performance of the IgA ELISA using nasal samples from experimentally vaccinated and infected cattle demonstrated a high level of specificity (99%) and an improved level of sensitivity (76.5%). Furthermore, the detection of carrier animals reached 96.9% when parallel testing of samples was carried out using both the IgA-ELISA and NSP-ELISA.


Assuntos
Doenças dos Bovinos/imunologia , Doenças dos Bovinos/virologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/imunologia , Febre Aftosa/virologia , Imunoglobulina A Secretora/imunologia , Mucosa/imunologia , Animais , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/epidemiologia , Surtos de Doenças , Ensaio de Imunoadsorção Enzimática , Febre Aftosa/diagnóstico , Febre Aftosa/epidemiologia , Mucosa/metabolismo , Curva ROC , Vacinas/imunologia
8.
Am J Dermatopathol ; 43(3): 217-220, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33464748

RESUMO

ABSTRACT: Mesenchymal neoplasms with oncogenic kinase activity due to genomic alterations in receptor tyrosine kinase genes are a morphologically heterogeneous group with a variable biologic potential. A subset of these neoplasms are characterized by immunophenotypic property of dual S100 protein/CD34 expression, histopathological resemblance to lipofibromatosis or peripheral nerve sheath tumors, and often alterations in neurotrophic tropomyosin-related kinase genes. In this article, we present a case of an S100 protein/CD34-positive spindle cell neoplasm harboring a rare BRAF gene rearrangement (KIAA1549-BRAF fusion) and discuss the clinical, histopathological, and molecular variations associated with such neoplasms.


Assuntos
Proteínas de Membrana/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Antígenos CD34/metabolismo , Humanos , Masculino , Proteínas S100/metabolismo , Neoplasias Cutâneas/metabolismo , Adulto Jovem
9.
Virus Evol ; 7(1): veab009, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35186323

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious animal disease caused by an RNA virus subdivided into seven serotypes that are unevenly distributed in Asia, Africa, and South America. Despite the challenges of controlling FMD, since 1996 there have been only two outbreaks attributed to serotype C, in Brazil and in Kenya, in 2004. This article describes the historical distribution and origins of serotype C and its disappearance. The serotype was first described in Europe in the 1920s, where it mainly affected pigs and cattle but as a less common cause of outbreaks than serotypes O and A. No serotype C outbreaks have been reported in Europe since vaccination stopped in 1990. FMD virus is presumed to have been introduced into South America from Europe in the nineteenth century, although whether serotype C evolved there or in Europe is not known. As in Europe, this serotype was less widely distributed and caused fewer outbreaks than serotypes O and A. Since 1994, serotype C had not been reported from South America until four small outbreaks were detected in the Amazon region in 2004. Elsewhere, serotype C was introduced to Asia, in the 1950s to the 1970s, persisting and evolving for several decades in the Indian subcontinent and for eighteen years in the Philippines. Serotype C virus also circulated in East Africa between 1957 and 2004. Many serotype C viruses from European and Kenyan outbreaks were closely related to vaccine strains, including the most recently recovered Kenyan isolate from 2004. International surveillance has not confirmed any serotype C cases, worldwide, for over 15 years, despite more than 2,000 clinical submissions per year to reference laboratories. Serology provides limited evidence for absence of this serotype, as unequivocal interpretation is hampered by incomplete intra-serotype specificity of immunoassays and the continued use of this serotype in vaccines. It is recommended to continue strengthening surveillance in regions of FMD endemicity, to stop vaccination against serotype C and to reduce working with the virus in laboratories, since inadvertent escape of virus during such activities is now the biggest risk for its reappearance in the field.

10.
Front Vet Sci ; 7: 552670, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330684

RESUMO

Endemic circulation of foot-and-mouth disease (FMD) in Africa and Asia poses a continuous risk to countries in Europe, North America, and Oceania which are free from the disease. Introductions of the disease into a free region have dramatic economic impacts, especially if they are not detected at an early stage and controlled rapidly. However, farmers and veterinarians have an obvious disincentive to report clinical signs that are consistent with FMD, due to the severe consequences of raising an official suspicion, such as farm-level quarantine. One way that the risk of late detection can be mitigated is offering non-discriminatory exclusion testing schemes for differential diagnostics, wherein veterinarians can submit samples without the involvement of the competent authority and without sanctions or costs for the farmer. This review considers the benefits and limitations of this approach to improve the early detection of FMD in free countries and gives an overview of the FMD testing schemes currently in use in selected countries in Europe and the Americas as well as in Australia.

11.
Proc Biol Sci ; 287(1938): 20200906, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33143581

RESUMO

Foot-and-mouth disease (FMD) is an extremely infectious viral infection of cloven-hoofed animals which is highly challenging to control and can give rise to national animal health crises, especially if there is a lack of pre-existing immunity due to the emergence of new strains or following incursions into disease-free regions. The 2001 FMD epidemic in the UK was on a scale that initially overwhelmed the national veterinary services and was eventually controlled by livestock lockdown and slaughter on an unprecedented scale. In 2020, the rapid emergence of COVID-19 has led to a human pandemic unparalleled in living memory. The enormous logistics of multi-agency control efforts for COVID-19 are reminiscent of the 2001 FMD epidemic in the UK, as are the use of movement restrictions, not normally a feature of human disease control. The UK experience is internationally relevant as few countries have experienced national epidemic crises for both diseases. In this review, we reflect on the experiences and lessons learnt from UK and international responses to FMD and COVID-19 with respect to their management, including the challenge of preclinical viral transmission, threat awareness, early detection, different interpretations of scientific information, lockdown, biosecurity behaviour change, shortage of testing capacity and the choices for eradication versus living with infection. A major lesson is that the similarity of issues and critical resources needed to manage large-scale outbreaks demonstrates that there is benefit to a 'One Health' approach to preparedness, with potential for greater cooperation in planning and the consideration of shared critical resources.


Assuntos
Infecções por Coronavirus/epidemiologia , Febre Aftosa/epidemiologia , Pneumonia Viral/epidemiologia , Animais , Betacoronavirus , COVID-19 , Febre Aftosa/prevenção & controle , Humanos , Pandemias , SARS-CoV-2 , Reino Unido/epidemiologia
13.
mBio ; 11(4)2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753488

RESUMO

Indirect transmission via a contaminated environment can occur for a number of pathogens, even those typically thought of as being directly transmitted, such as influenza virus, norovirus, bovine tuberculosis, or foot-and-mouth disease virus (FMDV). Indirect transmission facilitates spread from multiple sources beyond the infectious host, complicating the epidemiology and control of these diseases. This study carried out a series of transmission experiments to determine the dose-response relationship between environmental contamination and transmission of FMDV in cattle from measurements of viral shedding and rates of environmental contamination and survival. Seven out of ten indirect exposures resulted in successful transmission. The basic reproduction number for environmental transmission of FMDV in this experimental setting was estimated at 1.65, indicating that environmental transmission alone could sustain an outbreak. Importantly, detection of virus in the environment prior to the appearance of clinical signs in infected cattle and successful transmission from these environments highlights there is a risk of environmental transmission even before foot-and-mouth disease (FMD) is clinically apparent in cattle. Estimated viral decay rates suggest that FMDV remained viable in this environment for up to 14 days, emphasizing the requirement for stringent biosecurity procedures following outbreaks of FMD and the design of control measures that reflect the biology of a pathogen.IMPORTANCE Effective control of a disease relies on comprehensive understanding of how transmission occurs, in order to design and apply effective control measures. Foot-and-mouth disease virus (FMDV) is primarily spread by direct contact between infected and naive individuals, although the high levels of virus shed by infected animals mean that virus can also be spread through contact with contaminated environments. Using a series of transmission experiments, we demonstrate that environmental transmission alone would be sufficient to sustain an outbreak. Key observations include that a risk of transmission exists before clinical signs of foot-and-mouth disease (FMD) are apparent in cattle and that survival of virus in the environment extends the transmission risk period. This study highlights the role a contaminated environment can play in the transmission of FMDV and presents approaches that can also be applied to study the transmission of other pathogens that are able to survive in the environment.


Assuntos
Doenças dos Bovinos/transmissão , Doenças dos Bovinos/virologia , Surtos de Doenças/prevenção & controle , Microbiologia Ambiental , Febre Aftosa/transmissão , Animais , Anticorpos Antivirais/sangue , Bovinos , Surtos de Doenças/veterinária , Vírus da Febre Aftosa/fisiologia , Eliminação de Partículas Virais
14.
Vaccine ; 37(8): 1007-1015, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30685245

RESUMO

Vaccines are commonly used to control Foot-and-Mouth Disease (FMD) in endemic regions and form an important part of contingency plans for FMD-free countries. Conventional FMD vaccines have numerous limitations, and the U.S. government supports the development of next-generation vaccines. In the U.S., vaccine efficacy is typically demonstrated through experimental vaccination and challenge of animals using the World Organization for Animal Health (OIE) standards. Although conventional challenge and immunogenicity studies provide useful information, they have limitations and results do not always accurately predict field performance. Consequently, there is a need to test next-generation vaccines under field conditions to gain a better understanding of field performance to inform policy decisions and support their viability as a commercial product. In June 2017, an expert consultation was organised to discuss and define an optimal field study design for novel FMD vaccines. Cattle were the primary species considered, although parallel strategies for swine and small ruminants were also discussed. Many methodological and logistical considerations in the study design were identified, including: (1) study site selection and the importance of baseline studies to understand exposure risk, (2) ethics of using a placebo and assessing equivalence with conventional vaccines, (3) merits of using individual randomised versus cluster randomised trials, (4) preventive versus reactive vaccination, and (5) methods of randomisation and blinding. The proposed optimal study design was a multicentre (i.e. farm), three-arm, double-blind randomised controlled trial comparing groups receiving the novel vaccine to a conventional vaccine group and a placebo group. Large farms in areas of high exposure risk were identified as ideal study sites, and the primary study outcome was susceptibility to disease or infection, during a six-month observation period, following a single dose of vaccine. This report provides a summary of the important issues to consider when designing a field efficacy study in livestock and proposes a study design that could be utilised for novel FMD vaccines.


Assuntos
Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Gado/imunologia , Animais , Anticorpos Antivirais/imunologia , Surtos de Doenças/prevenção & controle , Método Duplo-Cego , Fazendas , Vírus da Febre Aftosa/imunologia , Vacinação/métodos , Vacinas Virais/imunologia
15.
Nat Ecol Evol ; 2(9): 1449-1457, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30082738

RESUMO

Livestock production in Africa is key to national economies, food security and rural livelihoods, and > 85% of livestock keepers live in extreme poverty. With poverty elimination central to the Sustainable Development Goals, livestock keepers are therefore critically important. Foot-and-mouth disease is a highly contagious livestock disease widespread in Africa that contributes to this poverty. Despite its US$2.3 billion impact, control of the disease is not prioritized: standard vaccination regimens are too costly, its impact on the poorest is underestimated, and its epidemiology is too weakly understood. Our integrated analysis in Tanzania shows that the disease is of high concern, reduces household budgets for human health, and has major impacts on milk production and draft power for crop production. Critically, foot-and-mouth disease outbreaks in cattle are driven by livestock-related factors with a pattern of changing serotype dominance over time. Contrary to findings in southern Africa, we find no evidence of frequent infection from wildlife, with outbreaks in cattle sweeping slowly across the region through a sequence of dominant serotypes. This regularity suggests that timely identification of the epidemic serotype could allow proactive vaccination ahead of the wave of infection, mitigating impacts, and our preliminary matching work has identified potential vaccine candidates. This strategy is more realistic than wildlife-livestock separation or conventional foot-and-mouth disease vaccination approaches. Overall, we provide strong evidence for the feasibility of coordinated foot-and-mouth disease control as part of livestock development policies in eastern Africa, and our integrated socioeconomic, epidemiological, laboratory and modelling approach provides a framework for the study of other disease systems.


Assuntos
Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Vacinação , Animais , Búfalos , Bovinos , Surtos de Doenças , Cabras , Estudos Soroepidemiológicos , Ovinos , Tanzânia/epidemiologia
16.
Appl Environ Microbiol ; 84(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29959244

RESUMO

Environmental sampling enables disease surveillance beyond regular investigation of observed clinical cases, extending data on the circulation of a pathogen in a specific area. Developing straightforward, low-technology methods suitable for use under field conditions is key to the inclusion of such approaches alongside traditional surveillance techniques. Foot-and-mouth disease virus (FMDV) is an economically important livestock pathogen, affecting cloven-hoofed livestock in many countries. Countries with FMDV face severe trade restrictions, and infections can have long-term effects on the productivity of affected animals. Environmental contamination by the virus in excretions and secretions from infected individuals promotes transmission but also presents an opportunity for noninvasive sample collection, facilitating diagnostic and surveillance activities. We present environmental sampling methods that have been tested in the Kathmandu Valley, Nepal, where FMDV is endemic. A total of nine sites were visited and sampled between November 2016 and November 2017. Environmental swabs collected from sites with reported outbreaks of FMD were used to demonstrate successful detection of FMDV RNA from the environment. The development of methods that can reliably detect FMDV RNA in the environment is significant, since this possibility extends the toolbox available for surveillance for this disease. Similar methods have already been deployed in the effort to eradicate polio, and with FMDV, such methods could easily be deployed in the event of an outbreak to provide additional resources for detection that would relieve pressure on veterinary services. The development of low-technology, straightforward surveillance methods such as these can support a robust response to outbreaks.IMPORTANCE Prompt confirmation and diagnosis of disease are key factors in controlling outbreaks. The development of sampling techniques to detect FMDV RNA from the environment will extend the tool kit available for the surveillance of this pathogen. The methods presented in this article broaden surveillance opportunities using accessible techniques. Pairing these methods with existing and novel diagnostic tests will improve the capability for rapid detection of outbreaks and implementation of timely interventions to control outbreaks. In areas of endemicity, these methods can be implemented to extend surveillance beyond the investigation of clinical cases, providing additional data for the assessment of virus circulation in specific areas.


Assuntos
Doenças dos Bovinos/virologia , Surtos de Doenças/veterinária , Monitoramento Ambiental/métodos , Vírus da Febre Aftosa/isolamento & purificação , Animais , Bovinos , Doenças dos Bovinos/prevenção & controle , Surtos de Doenças/prevenção & controle , Doenças Endêmicas/prevenção & controle , Doenças Endêmicas/veterinária , Monitoramento Epidemiológico , Feminino , Febre Aftosa/diagnóstico , Febre Aftosa/prevenção & controle , Vírus da Febre Aftosa/genética , Gado/virologia , Nepal/epidemiologia , RNA Viral/isolamento & purificação , Estudos de Amostragem , Manejo de Espécimes
18.
Curr Opin Virol ; 28: 85-91, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29245054

RESUMO

Foot-and-mouth disease (FMD) is highly infectious, but despite the large quantities of FMD virus released into the environment and the extreme susceptibility of host species to infection, transmission is not always predictable. Whereas virus spread in endemic settings is characterised by frequent direct and indirect animal contacts, incursions into FMD-free countries may be seeded by low-probability events such as fomite or wind-borne aerosol routes. There remains a void between data generated from small-scale experimental studies and our ability to reliably reconstruct transmission routes at different scales between farms, countries and regions. This review outlines recent transmission studies in susceptible host species, and considers new approaches that integrate virus genomics and epidemiological data to recreate and understand the spread of FMD.


Assuntos
Vírus da Febre Aftosa/genética , Febre Aftosa/epidemiologia , Febre Aftosa/transmissão , Genoma Viral , Animais , Bovinos/virologia , Surtos de Doenças , Vírus da Febre Aftosa/patogenicidade , Genômica , Cabras/virologia , Interações entre Hospedeiro e Microrganismos , Interações Hospedeiro-Patógeno , Análise de Sequência de DNA , Ovinos/virologia
19.
Vaccine ; 35(49 Pt B): 6842-6849, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29102329

RESUMO

Foot-and-mouth disease (FMD) is endemic in Eastern Africa with circulation of multiple serotypes of the virus in the region. Most of the outbreaks are caused by serotype O followed by serotype A. The lack of concerted FMD control programmes in Africa has provided little incentive for vaccine producers to select vaccines that are tailored to circulating regional isolates creating further negative feedback to deter the introduction of vaccine-based control schemes. In this study a total of 80 serotype O FMD viruses (FMDV) isolated from 1993 to 2012 from East and North Africa were characterized by virus neutralisation tests using bovine antisera to three existing (O/KEN/77/78, O/Manisa and O/PanAsia-2) and three putative (O/EA/2002, O/EA/2009 and O/EA/2010) vaccine strains and by capsid sequencing. Genetically, these viruses were grouped as either of East African origin with subdivision into four topotypes (EA-1, 2, 3 and 4) or of Middle-East South Asian (ME-SA) topotype. The ME-SA topotype viruses were mainly detected in Egypt and Libya reflecting the trade links with the Middle East countries. There was good serological cross-reactivity between the vaccine strains and most of the field isolates analysed, indicating that vaccine selection should not be a major constraint for control of serotype O FMD by vaccination, and that both local and internationally available commercial vaccines could be used. The O/KEN/77/78 vaccine, commonly used in the region, exhibited comparatively lower percent in vitro match against the predominant topotypes (EA-2 and EA-3) circulating in the region whereas O/PanAsia-2 and O/Manisa vaccines revealed broader protection against East African serotype O viruses, even though they genetically belong to the ME-SA topotype.


Assuntos
Antígenos Virais/genética , Antígenos Virais/imunologia , Vírus da Febre Aftosa/isolamento & purificação , Febre Aftosa/prevenção & controle , Sorogrupo , Vacinas Virais/imunologia , África Oriental/epidemiologia , Animais , Proteínas do Capsídeo/genética , Bovinos , Surtos de Doenças/prevenção & controle , Febre Aftosa/epidemiologia , Vírus da Febre Aftosa/classificação , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/imunologia , Testes de Neutralização , Filogenia , RNA Viral/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA