RESUMO
Exercise intolerance and exertional dyspnoea are hallmarks of fibrosing interstitial lung disease (FILD) and are associated with worse prognosis and quality of life. Activation of pulmonary vagal afferents influences the ventilatory pattern and contributes to the sensation of dyspnoea. We tested the hypothesis that nebulized fentanyl, which might attenuate aberrant pulmonary afferent activity in FILD, reduces ventilation and dyspnoea while extending exercise endurance time (EET). In this randomized, single-blind, placebo-controlled study, eight FILD patients (two males, 71 ± 6 years of age) performed incremental cardiopulmonary cycle exercise tests following nebulization of either fentanyl citrate (100 µg) or 0.9% saline. Previous work indicated that this dose was unlikely to produce central effects. Comparisons between treatment conditions at rest were undertaken using Student's paired t-test, and exercise data were evaluated with two-way ANOVA with repeated measures. Dyspnoea was assessed using the Borg dyspnoea scale. Resting respiratory variables were not different following treatment with fentanyl and saline; however, resting heart rate was lower following fentanyl (P = 0.002) and remained lower throughout exercise compared with placebo (P = 0.008). Fentanyl did not increase EET (placebo 334 ± 117 s vs. fentanyl 348 ± 126 s, P = 0.250) although overall minute ventilation was reduced slightly (mean difference: -0.97 L/min, P = 0.022). There were no differences in ratings of dyspnoea intensity or unpleasantness between the conditions either at rest or at end-exercise. Nebulized fentanyl did not improve EET or exercise dyspnoea but did decrease minute ventilation during exercise, although the extent of this reduction appears clinically insignificant. These findings suggest that nebulized fentanyl is unlikely to offer significant benefits for enhancing exercise capacity in FILD.
RESUMO
The autonomic regulation of the pulmonary vasculature has been under-appreciated despite the presence of sympathetic and parasympathetic neural innervation and adrenergic and cholinergic receptors on pulmonary vessels. Recent clinical trials targeting this innervation have demonstrated promising effects in pulmonary hypertension, and in this context of reignited interest, we review autonomic pulmonary vascular regulation, its integration with other pulmonary vascular regulatory mechanisms, systemic homeostatic reflexes and their clinical relevance in pulmonary hypertension. The sympathetic and parasympathetic nervous systems can affect pulmonary vascular tone and pulmonary vascular stiffness. Local afferents in the pulmonary vasculature are activated by elevations in pressure and distension and lead to distinct pulmonary baroreflex responses, including pulmonary vasoconstriction, increased sympathetic outflow, systemic vasoconstriction and increased respiratory drive. Autonomic pulmonary vascular control interacts with, and potentially makes a functional contribution to, systemic homeostatic reflexes, such as the arterial baroreflex. New experimental therapeutic applications, including pulmonary artery denervation, pharmacological cholinergic potentiation, vagal nerve stimulation and carotid baroreflex stimulation, have shown some promise in the treatment of pulmonary hypertension.
RESUMO
We tested the hypothesis that in human hypertension, an increased tonicity/sensitivity of the peripheral chemoreflex causes a sympathetically mediated restraint of nutritive blood flow to the exercising muscles. Fourteen patients with treated hypertension (age 69 ± 11 years, 136 ± 12/80 ± 11 mmHg; mean ± SD) were studied under conditions of intravenous 0.9% saline (control) and low-dose dopamine (2 µg kg-1 min-1) to inhibit the peripheral chemoreflex, at baseline, during isocapnic hypoxic rebreathing and during rhythmic handgrip exercise (3 min, 50% maximum voluntary contraction). At baseline, dopamine did not change mean blood pressure (95 ± 10 vs. 98 ± 10 mmHg, P = 0.155) but increased brachial artery blood flow (59 ± 20 vs. 48 ± 16 ml min-1, P = 0.030) and vascular conductance (0.565 ± 0.246 vs. 0.483 ± 0.160 ml min-1 mmHg-1; P = 0.039). Dopamine attenuated the increase in mean blood pressure (∆3 ± 4 vs. ∆8 ± 6 mmHg, P = 0.007) to isocapnic hypoxic rebreathing and reduced peripheral chemoreflex sensitivity by 28 ± 37% (P = 0.044). Rhythmic handgrip exercise induced increases in brachial artery blood flow and vascular conductance (both P < 0.05 vs. rest after 45 s) that were greater with dopamine than saline (e.g. Δ76 ± 54 vs. Δ60 ± 43 ml min-1 and Δ0.730 ± 0.440 vs. Δ0.570 ± 0.424 ml min-1 mmHg-1, respectively, at 60 s; main effect of condition both P < 0.0001). Our results indicate that the peripheral chemoreflex is tonically active at rest and restrains the blood flow and vascular conductance increases to exercise in treated human hypertension. KEY POINTS: It was hypothesised that in human hypertension, an increased tonicity/sensitivity of the peripheral chemoreflex causes a sympathetically mediated restraint of nutritive blood flow to the exercising muscles. Treated patients with hypertension (n = 14) were studied under conditions of intravenous 0.9% saline (control) and low-dose dopamine (2 µg kg-1 min-1) to inhibit the peripheral chemoreflex. Low-dose dopamine reduced resting ventilation and peripheral chemoreflex sensitivity, and while mean blood pressure was unchanged, brachial artery blood flow and vascular conductance were increased. Low-dose dopamine augmented the brachial artery blood flow and vascular conductance responses to rhythmic handgrip. These findings indicate that the peripheral chemoreflex is tonically active at rest and restrains the blood flow, and vascular conductance increases to exercise in treated human hypertension.
RESUMO
The dorsal motor nucleus of the vagus (DMV) contains parasympathetic motoneurons that project to the heart and lungs. These motoneurons control ventricular excitability/contractility and airways secretions/blood flow, respectively. However, their electrophysiological properties, morphology and synaptic input activity remain unknown. One important ionic current described in DMV motoneurons controlling their electrophysiological behaviour is the A-type mediated by voltage-dependent K+ (Kv) channels. Thus, we compared the electrophysiological properties, synaptic activity, morphology, A-type current density, and single cell expression of Kv subunits, that contribute to macroscopic A-type currents, between DMV motoneurons projecting to either the heart or lungs of adult male rats. Using retrograde labelling, we visualized distinct DMV motoneurons projecting to the heart or lungs in acutely prepared medullary slices. Subsequently, whole cell recordings, morphological reconstruction and single motoneuron qRT-PCR studies were performed. DMV pulmonary motoneurons were more depolarized, electrically excitable, presented higher membrane resistance, broader action potentials and received greater excitatory synaptic inputs compared to cardiac DMV motoneurons. These differences were in part due to highly branched dendritic complexity and lower magnitude of A-type K+ currents. By evaluating expression of channels that mediate A-type currents from single motoneurons, we demonstrated a lower level of Kv4.2 in pulmonary versus cardiac motoneurons, whereas Kv4.3 and Kv1.4 levels were similar. Thus, with the distinct electrical, morphological, and molecular properties of DMV cardiac and pulmonary motoneurons, we surmise that these cells offer a new vista of opportunities for genetic manipulation providing improvement of parasympathetic function in cardiorespiratory diseases such heart failure and asthma.
Assuntos
Coração , Pulmão , Neurônios Motores , Nervo Vago , Animais , Neurônios Motores/fisiologia , Masculino , Coração/fisiologia , Coração/inervação , Pulmão/fisiologia , Pulmão/inervação , Nervo Vago/fisiologia , Bulbo/fisiologia , Bulbo/citologia , Bulbo/metabolismo , Potenciais de Ação/fisiologia , Ratos Sprague-Dawley , Ratos , Técnicas de Patch-ClampRESUMO
BACKGROUND: Exertional dyspnoea, a cardinal symptom in interstitial lung disease (ILD), can be objectively measured during a 6-min walk test (6MWT) using the Borg Dyspnoea Score (BDS). However, the clinical utility of this measurement is unclear. The purpose of this systematic review was to determine the association between 6MWT BDS and prognosis (mortality and lung transplantation), other 6MWT variables and measures of pulmonary function. METHODS: MEDLINE, EMBASE, Cochrane and SCOPUS databases were used to identify studies reporting an association between post-6MWT BDS and the relevant outcomes in adults with ILD. Language was limited to English. Study quality was assessed using the Quality in Prognosis Study risk of bias tool. A narrative synthesis for each outcome was performed. RESULTS: Ten full-text studies (n = 518) were included. Four studies had high overall risk of bias. Two studies (n = 127) reported prognosis and both found that higher 6MWT BDS was associated with increased all-cause mortality. However, the certainty of evidence was very low due to study design and likely publication bias. Higher post-6MWT BDS may be associated with shorter, or no effect on 6MWD; and lower pulmonary function. There was insufficient evidence that BDS correlated with 6MWT oxygen saturation. CONCLUSIONS: Post-6MWT BDS has a potential role as a predictor of all-cause mortality in ILD, 6MWD and lower pulmonary function. Larger studies designed to confirm these relationships and assess the independent association between the 6MWT BDS and clinical outcomes are required.
Assuntos
Dispneia , Doenças Pulmonares Intersticiais , Teste de Caminhada , Humanos , Doenças Pulmonares Intersticiais/fisiopatologia , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/mortalidade , Dispneia/fisiopatologia , Dispneia/diagnóstico , Dispneia/etiologia , Teste de Caminhada/métodos , Prognóstico , Feminino , Masculino , Índice de Gravidade de Doença , Pessoa de Meia-Idade , Transplante de PulmãoRESUMO
The dysfunction of ion channels is a causative factor in a variety of neurological diseases, thereby defining the implicated channels as key drug targets. The detection of functional changes in multiple specific ionic currents currently presents a challenge, particularly when the neurological causes are either a priori unknown, or are unexpected. Traditional patch clamp electrophysiology is a powerful tool in this regard but is low throughput. Here, we introduce a single-shot method for detecting alterations amongst a range of ion channel types from subtle changes in membrane voltage in response to a short chaotically driven current clamp protocol. We used data assimilation to estimate the parameters of individual ion channels and from these we reconstructed ionic currents which exhibit significantly lower error than the parameter estimates. Such reconstructed currents thereby become sensitive predictors of functional alterations in biological ion channels. The technique correctly predicted which ionic current was altered, and by approximately how much, following pharmacological blockade of BK, SK, A-type K+ and HCN channels in hippocampal CA1 neurons. We anticipate this assay technique could aid in the detection of functional changes in specific ionic currents during drug screening, as well as in research targeting ion channel dysfunction.
Assuntos
Canais Iônicos , Neurônios , Eletrofisiologia , Canais Iônicos/metabolismo , Neurônios/metabolismo , Membrana Celular/metabolismo , Transporte de ÍonsRESUMO
BACKGROUND: The symptoms of long COVID, which include fatigue, breathlessness, dysregulated breathing, and exercise intolerance, have unknown mechanisms. These symptoms are also observed in heart failure and are partially driven by increased sensitivity of the carotid chemoreflex. As the carotid body has an abundance of ACE2 (the cell entry mechanism for SARS-CoV-2), we investigated whether carotid chemoreflex sensitivity was elevated in participants with long COVID. METHODS: Non-hositalised participants with long-COVID (n = 14) and controls (n = 14) completed hypoxic ventilatory response (HVR; the measure of carotid chemoreflex sensitivity) and cardiopulmonary exercise tests. Parametric and normally distributed data were compared using Student's unpaired t-tests or ANOVA. Nonparametric equivalents were used where relevant. Peason's correlation coefficient was used to examine relationships between variables. RESULTS: During cardiopulmonary exercise testing the VE/VCO2 slope (a measure of breathing efficiency) was higher in the long COVID group (37.8 ± 4.4) compared to controls (27.7 ± 4.8, P = 0.0003), indicating excessive hyperventilation. The HVR was increased in long COVID participants (-0.44 ± 0.23 l/min/ SpO2%, R2 = 0.77 ± 0.20) compared to controls (-0.17 ± 0.13 l/min/SpO2%, R2 = 0.54 ± 0.38, P = 0.0007). The HVR correlated with the VE/VCO2 slope (r = -0.53, P = 0.0036), suggesting that excessive hyperventilation may be related to carotid body hypersensitivity. CONCLUSIONS: The carotid chemoreflex is sensitised in long COVID and may explain dysregulated breathing and exercise intolerance in these participants. Tempering carotid body excitability may be a viable treatment option for long COVID patients.
Patients with long COVID suffer from breathlessness during exercise, leading to exercise intolerance. We know that SARS-CoV-2, the virus that causes COVID-19, can infect carotid bodies which is a small sensory organ that sends signals to the brain for regulating breathing and blood pressure. This is called the carotid chemoreflex. However, it is not clear if SARS-CoV-2 infection affects carotid chemoreflex. Here, we examine whether the normal functioning of carotid chemoreflex is disrupted in non-hospitalised patients with long COVID and if this is linked to excessive breathing during exercise. Our study shows that carotid chemoreflex is more sensitive in long COVID patients, who are otherwise healthy. The carotid bodies could be a good therapeutic target for treating breathlessness in patients with long COVID.
RESUMO
BACKGROUND: The mesenteric venous reservoir plays a vital role in mediating blood volume and pressure changes and is richly innervated by sympathetic nerves; however, the precise nature of venous sympathetic regulation and its role during hypertension remains unclear. We hypothesized that sympathetic drive to mesenteric veins in spontaneously hypertensive (SH) rats is raised, increasing mean circulatory filling pressure (MCFP), and impairing mesenteric capacitance. METHODS: Arterial pressure, central venous pressure, mesenteric arterial, and venous blood flow were measured simultaneously in conscious male Wistar and SH rats. MCFP was assessed using an intraatrial balloon. Hemodynamic responses to volume changes (±20%) were measured before and after ganglionic blockade and carotid body denervation. Sympathetic venoconstrictor activity was measured in situ. RESULTS: MCFP in vivo (10.8±1.6 versus 8.0±2.1 mmâ Hg; P=0.0005) and sympathetic venoconstrictor drive in situ (18±1 versus 10±2 µV; P<0.0001) were higher in SH rats; MCFP decreased in SH rats after hexamethonium and carotid body denervation (7.6±1.4; P<0.0001 and 8.5±1.0 mmâ Hg; P=0.0045). During volume changes, arterial pressure remained stable. With blood loss, net efflux of blood from the mesenteric bed was measured in both strains. However, during volume infusion, we observed net influx in Wistar (+2.3±2.6 mL/min) but efflux in SH rats (-1.0±1.0 mL/min; P=0.0032); this counterintuitive efflux was abolished by hexamethonium and carotid body denervation (+0.3±1.7 and 0.5±1.6 mL/min, respectively). CONCLUSIONS: In SH rats, excessive sympathetic venoconstriction elevates MCFP and reduces capacitance, impairing volume buffering by mesenteric veins. We propose selective targeting of mesenteric veins through sympathetic drive reduction as a novel therapeutic opportunity for hypertension.
Assuntos
Hipertensão , Veias Mesentéricas , Ratos , Masculino , Animais , Veias Mesentéricas/fisiologia , Pressão Sanguínea/fisiologia , Hexametônio , Ratos Wistar , Ratos Endogâmicos SHRRESUMO
Chronic intermittent hypoxia (CIH, a model for sleep apnoea) is a major risk factor for several cardiovascular diseases. Autonomic imbalance (sympathetic overactivity and parasympathetic withdrawal) has emerged as a causal contributor of CIH-induced cardiovascular disease. Previously, we showed that CIH remodels the parasympathetic pathway. However, whether CIH induces remodelling of the cardiac sympathetic innervation remains unknown. Mice (male, C57BL/6J, 2-3 months) were exposed to either room air (RA, 21% O2 ) or CIH (alternating 21% and 5.7% O2 , every 6 min, 10 h day-1 ) for 8-10 weeks. Flat-mounts of their left and right atria were immunohistochemically labelled for tyrosine hydroxylase (TH, a sympathetic marker). Using a confocal microscope (or fluorescence microscope) and Neurlocudia 360 digitization and tracing system, we scanned both the left and right atria and quantitatively analysed the sympathetic axon density in both groups. The segmentation data was mapped onto a 3D mouse heart scaffold. Our findings indicated that CIH significantly remodelled the TH immunoreactive (-IR) innervation of the atria by increasing its density at the sinoatrial node, the auricles and the major veins attached to the atria (P < 0.05, n = 7). Additionally, CIH increased the branching points of TH-IR axons and decreased the distance between varicosities. Abnormal patterns of TH-IR axons around intrinsic cardiac ganglia were also found following CIH. We postulate that the increased sympathetic innervation may further amplify the effects of enhanced CIH-induced central sympathetic drive to the heart. Our work provides an anatomical foundation for the understanding of CIH-induced autonomic imbalance. KEY POINTS: Chronic intermittent hypoxia (CIH, a model for sleep apnoea) causes sympathetic overactivity, cardiovascular remodelling and hypertension. We determined the effect of CIH on sympathetic innervation of the mouse atria. In vivo CIH for 8-10 weeks resulted in an aberrant axonal pattern around the principal neurons within intrinsic cardiac ganglia and an increase in the density, branching point, tortuosity of catecholaminergic axons and atrial wall thickness. Utilizing mapping tool available from NIH (SPARC) Program, the topographical distribution of the catecholaminergic innervation of the atria were integrated into a novel 3D heart scaffold for precise anatomical distribution and holistic quantitative comparison between normal and CIH mice. This work provides a unique neuroanatomical understanding of the pathophysiology of CIH-induced autonomic remodelling.
Assuntos
Hipertensão , Síndromes da Apneia do Sono , Camundongos , Masculino , Animais , Camundongos Endogâmicos C57BL , Átrios do Coração/metabolismo , HipóxiaRESUMO
Carotid body pathophysiology is associated with many cardiovascular-respiratory-metabolic diseases. This pathophysiology reflects both hyper-sensitivity and hyper-tonicity. From both animal models and human patients, evidence indicates that amelioration of this pathophysiological signalling improves disease states such as a lowering of blood pressure in hypertension, a reduction of breathing disturbances with improved cardiac function in heart failure (HF) and a re-balancing of autonomic activity with lowered sympathetic discharge. Given this, we have reviewed the mechanisms of carotid body hyper-sensitivity and hyper-tonicity across disease models asking whether there is uniqueness related to specific disease states. Our analysis indicates some commonalities and some potential differences, although not all mechanisms have been fully explored across all disease models. One potential commonality is that of hypoperfusion of the carotid body across hypertension and HF, where the excessive sympathetic drive may reduce blood flow in both models and, in addition, lowered cardiac output in HF may potentiate the hypoperfusion state of the carotid body. Other mechanisms are explored that focus on neurotransmitter and signalling pathways intrinsic to the carotid body (e.g. ATP, carbon monoxide) as well as extrinsic molecules carried in the blood (e.g. leptin); there are also transcription factors found in the carotid body endothelium that modulate its activity (Krüppel-like factor 2). The evidence to date fully supports that a better understanding of the mechanisms of carotid body pathophysiology is a fruitful strategy for informing potential new treatment strategies for many cardiovascular, respiratory and metabolic diseases, and this is highly relevant clinically.
Assuntos
Corpo Carotídeo , Insuficiência Cardíaca , Hipertensão , Doenças Metabólicas , Animais , Humanos , Corpo Carotídeo/fisiologia , CoraçãoRESUMO
Background An elevated ventilatory efficiency slope during exercise (minute ventilation/volume of expired CO2; VE/VCO2 slope) is a strong prognostic indicator in heart failure. It is elevated in people with heart failure with preserved ejection, many of whom have hypertension. However, whether the VE/VCO2 slope is also elevated in people with primary hypertension versus normotensive individuals is unknown. We hypothesize that there is a spectrum of ventilatory inefficiency in cardiovascular disease, reflecting an increasingly abnormal physiological response to exercise. The aim of this study was to evaluate the VE/VCO2 slope in patients with hypertension compared with age-, peak oxygen consumption-, and sex-matched healthy subjects. Methods and Results Ramped cardiovascular pulmonary exercise tests to peak oxygen consumption were completed on a bike ergometer in 55 patients with primary hypertension and 24 normotensive controls. The VE/VCO2 slope was assessed from the onset of exercise to peak oxygen consumption. Data were compared using unpaired Student t test. Age (mean±SD, 66±6 versus 64±6 years; P=0.18), body mass index (25.4±3.5 versus 24±2.4 kg/m2; P=0.13), and peak oxygen consumption (23.2±6.6 versus 24±7.3 mL/min per kg; P=0.64) were similar between groups. The VE/VCO2 slope was elevated in the hypertensive group versus controls (31.8±4.5 versus 28.4±3.4; P=0.002). Only 27% of the hypertensive group were classified as having a normal VE/VCO2 slope (20-30) versus 71% in the control group. Conclusions Ventilatory efficiency is impaired people with hypertension without a diagnosis of heart failure versus normotensive individuals. Future research needs to establish whether those patients with hypertension with elevated VE/VCO2 slopes are at risk of developing future heart failure.
Assuntos
Insuficiência Cardíaca , Hipertensão , Humanos , Pessoa de Meia-Idade , Idoso , Consumo de Oxigênio/fisiologia , Pulmão , Prognóstico , Teste de Esforço/métodos , Insuficiência Cardíaca/diagnóstico , Hipertensão/diagnóstico , Hipertensão Essencial , Tolerância ao ExercícioRESUMO
The carotid body (CB) has emerged as a potential therapeutic target for treating sympathetically mediated cardiovascular, respiratory, and metabolic diseases. In adjunct to its classical role as an arterial O2 sensor, the CB is a multimodal sensor activated by a range of stimuli in the circulation. However, consensus on how CB multimodality is achieved is lacking; even the best studied O2-sensing appears to involve multiple convergent mechanisms. A strategy to understand multimodal sensing is to adopt a hypothesis-free, high-throughput transcriptomic approach. This has proven instrumental for understanding fundamental mechanisms of CB response to hypoxia and other stimulants, its developmental niche, cellular heterogeneity, laterality, and pathophysiological remodeling in disease states. Herein, we review this published work that reveals novel molecular mechanisms underpinning multimodal sensing and reveals numerous gaps in knowledge that require experimental testing.
Assuntos
Corpo Carotídeo , Humanos , Corpo Carotídeo/fisiologia , Transcriptoma , Células Quimiorreceptoras/metabolismo , HipóxiaRESUMO
In hypertension, the cardiorespiratory responses to peripheral chemoreflex activation (hypoxia) and inactivation (hyperoxia) are reportedly augmented, but the impact on peripheral venous function is unknown. We tested the hypothesis that in hypertensives, both hypoxia and hyperoxia evoke more pronounced changes in lower limb venous capacity and compliance, than in age-matched normotensives. In 10 hypertensive [HTN: 7 women; age: 71.7 ± 3.7 yr, mean blood pressure (BP): 101 ± 10 mmHg, mean ± SD] and 11 normotensive (NT: 6 women; age: 67.7 ± 8.0 yr, mean BP 89 ± 11 mmHg) participants, great saphenous vein cross-sectional area (GSV CSA; Doppler ultrasound) was measured during a standard 60 mmHg thigh cuff inflation-deflation protocol. Separate conditions of room air, hypoxia [fraction of inspired oxygen ([Formula: see text]): 0.10] and hyperoxia ([Formula: see text]: 0.50) were tested. In HTN, GSV CSA was decreased in hypoxia (5.6 ± 3.7 mm2, P = 0.041) compared with room air (7.3 ± 6.9 mm2), whereas no change was observed with hyperoxia (8.0 ± 9.1 mm2, P = 0.988). In NT, no differences in GSV CSA were observed between any condition (P = 0.299). Hypoxia enhanced GSV compliance in HTN (-0.0125 ± 0.0129 vs. -0.0288 ± 0.0090 mm2·100 mm2·mmHg-1, room air vs. hypoxia, respectively; P = 0.004), but it was unchanged in NT (-0.0139 ± 0.0121 vs. -0.0093 ± 0.0066 mm2·100 mm2·mmHg-1, room air vs. hypoxia, respectively; P < 0.541). Venous compliance was unaltered with hyperoxia in both groups (P < 0.05). In summary, compared with NT, hypoxia elicits a decrease in GSV CSA and enhanced GSV compliance in HTN, indicating enhanced venomotor responsiveness to hypoxia.NEW & NOTEWORTHY Hypertension remains a significant global health problem. Although hypertension research and therapies are keenly focused on the heart and arterial circulation, the venous circulation has been neglected comparatively. We determined whether hypoxia, known to cause peripheral chemoreflex activation, evoked more pronounced changes in lower limb venous capacity and compliance in hypertensives (HTN) than in age-matched normotensives (NT). We found that hypoxia reduced venous capacity in the great saphenous vein in HTN and increased its compliance twofold. However, hypoxia did not affect venous function in NT. Our data indicate the venomotor response to hypoxia is enhanced in hypertension, and this may contribute to the hypertensive state.
Assuntos
Hiperóxia , Hipertensão , Humanos , Adulto , Feminino , Idoso , Pessoa de Meia-Idade , Hipóxia , Veias , OxigênioRESUMO
Increased peripheral chemoreflex sensitivity is a pathogenic feature of human hypertension (HTN), while both central and peripheral chemoreflex sensitivities are reportedly augmented in animal models of HTN. Herein, we tested the hypothesis that both central and combined central and peripheral chemoreflex sensitivities are augmented in HTN. Fifteen HTN participants (68 ± 5 years; mean ± SD) and 13 normotensives (NT; 65 ± 6 years) performed two modified rebreathing protocols in which the partial pressure of end-tidal carbon dioxide ( P ETC O 2 ${P_{{\rm{ETC}}{{\rm{O}}_2}}}$ ) progressively increased while the partial pressure of end-tidal oxygen was clamped at either 150 mmHg (isoxic hyperoxia; central chemoreflex activation) or 50 mmHg (isoxic hypoxia; combined central and peripheral chemoreflex activation). Ventilation ( V Ì E ${\dot{V}}_{\rm{E}}$ ; pneumotachometer) and muscle sympathetic nerve activity (MSNA; microneurography) were recorded, and ventilatory ( V Ì E ${\dot{V}}_{\rm{E}}$ vs. P ETC O 2 ${P_{{\rm{ETC}}{{\rm{O}}_2}}}$ slope) and sympathetic (MSNA vs. P ETC O 2 ${P_{{\rm{ETC}}{{\rm{O}}_2}}}$ slope) chemoreflex sensitivities and recruitment thresholds (breakpoint) were calculated. Global cerebral blood flow (gCBF; duplex Doppler) was measured, and the association with chemoreflex responses was examined. Central ventilatory and sympathetic chemoreflex sensitivities were greater in HTN than NT (2.48 ± 1.33 vs. 1.58 ± 0.42 L min-1 mmHg-1 , P = 0.030: 3.32 ± 1.90 vs. 1.77 ± 0.62 a.u. mmHg-1 , P = 0.034, respectively), while recruitment thresholds were not different between groups. HTN and NT had similar combined central and peripheral ventilatory and sympathetic chemoreflex sensitivities and recruitment thresholds. A lower gCBF was associated with an earlier recruitment threshold for V Ì E ${\dot{V}}_{\rm{E}}$ (R2 = 0.666, P < 0.0001) and MSNA (R2 = 0.698, P = 0.004) during isoxic hyperoxic rebreathing. These findings indicate that central ventilatory and sympathetic chemoreflex sensitivities are augmented in human HTN and perhaps suggest that targeting the central chemoreflex may help some forms of HTN. KEY POINTS: In human hypertension (HTN) increased peripheral chemoreflex sensitivity has been identified as a pathogenic feature, and in animal models of HTN, both central and peripheral chemoreflex sensitivities are reportedly augmented. In this study, the hypothesis was tested that both central and combined central and peripheral chemoreflex sensitivities are augmented in human HTN. We observed that both central ventilatory and sympathetic chemoreflex sensitivities were augmented in HTN compared to age-matched normotensive controls, but no difference was found in the combined central and peripheral ventilatory and sympathetic chemoreflex sensitivities. During central chemoreflex activation, the ventilatory and sympathetic recruitment thresholds were lower in those with lower total cerebral blood flow. These results indicate a potential contributory role of the central chemoreceptors in the pathogenesis of human HTN and support the possibility that therapeutic targeting of the central chemoreflex may help some forms of HTN.
Assuntos
Hiperóxia , Hipertensão , Animais , Humanos , Reflexo/fisiologia , Respiração , Hipóxia , Dióxido de Carbono , Células Quimiorreceptoras/fisiologiaRESUMO
Despite advances in the treatment of heart failure, prognosis is poor, mortality high and there remains no cure. Heart failure is associated with reduced cardiac pump function, autonomic dysregulation, systemic inflammation and sleep-disordered breathing; these morbidities are exacerbated by peripheral chemoreceptor dysfunction. We reveal that in heart failure the carotid body generates spontaneous, episodic burst discharges coincident with the onset of disordered breathing in male rats. Purinergic (P2X3) receptors were upregulated two-fold in peripheral chemosensory afferents in heart failure, and when antagonized abolished these episodic discharges, normalized both peripheral chemoreceptor sensitivity and the breathing pattern, reinstated autonomic balance, improved cardiac function, and reduced both inflammation and biomarkers of cardiac failure. Aberrant ATP transmission in the carotid body triggers episodic discharges that via P2X3 receptors play a crucial role in the progression of heart failure and as such offer a distinct therapeutic angle to reverse multiple components of its pathogenesis.
Assuntos
Corpo Carotídeo , Insuficiência Cardíaca , Ratos , Masculino , Animais , Receptores Purinérgicos P2X3 , Células Quimiorreceptoras/fisiologia , RespiraçãoRESUMO
NEW FINDINGS: What is the topic of this review? Regarding the global metabolic syndrome crisis, this review focuses on common mechanisms for high blood sugar and high blood pressure. Connections are made between the homeostatic regulation of blood pressure and blood sugar and their dysregulation to reveal signalling mechanisms converging on the carotid body. What advances does it highlight? The carotid body plays a major part in the generation of excessive sympathetic activity in diabetes and also underpins diabetic hypertension. As treatment of diabetic hypertension is notoriously difficult, we propose that novel receptors within the carotid body may provide a novel treatment strategy. ABSTRACT: The maintenance of glucose homeostasis is obligatory for health and survival. It relies on peripheral glucose sensing and signalling between the brain and peripheral organs via hormonal and neural responses that restore euglycaemia. Failure of these mechanisms causes hyperglycaemia or diabetes. Current anti-diabetic medications control blood glucose but many patients remain with hyperglycemic condition. Diabetes is often associated with hypertension; the latter is more difficult to control in hyperglycaemic conditions. We ask whether a better understanding of the regulatory mechanisms of glucose control could improve treatment of both diabetes and hypertension when they co-exist. With the involvement of the carotid body (CB) in glucose sensing, metabolic regulation and control of sympathetic nerve activity, we consider the CB as a potential treatment target for both diabetes and hypertension. We provide an update on the role of the CB in glucose sensing and glucose homeostasis. Physiologically, hypoglycaemia stimulates the release of hormones such as glucagon and adrenaline, which mobilize or synthesize glucose; however, these counter-regulatory responses were markedly attenuated after denervation of the CBs in animals. Also, CB denervation prevents and reverses insulin resistance and glucose intolerance. We discuss the CB as a metabolic regulator (not just a sensor of blood gases) and consider recent evidence of novel 'metabolic' receptors within the CB and putative signalling peptides that may control glucose homeostasis via modulation of the sympathetic nervous system. The evidence presented may inform future clinical strategies in the treatment of patients with both diabetes and hypertension, which may include the CB.
Assuntos
Corpo Carotídeo , Diabetes Mellitus , Hipertensão , Animais , Corpo Carotídeo/metabolismo , Glicemia/metabolismo , Glucose/metabolismo , Diabetes Mellitus/metabolismo , MorbidadeRESUMO
AIMS: The carotid bodies (CBs) of spontaneously hypertensive (SH) rats exhibit hypertonicity and hyperreflexia contributing to heightened peripheral sympathetic outflow. We hypothesized that CB hyperexcitability is driven by its own sympathetic innervation. METHODS AND RESULTS: To test this, the chemoreflex was activated (NaCN 50-100 µL, 0.4 µg/µL) in SH and Wistar rats in situ before and after: (i) electrical stimulation (ES; 30 Hz, 2 ms, 10 V) of the superior cervical ganglion (SCG), which innervates the CB; (ii) unilateral resection of the SCG (SCGx); (iii) CB injections of an α1-adrenergic receptor agonist (phenylephrine, 50 µL, 1 mmol/L), and (iv) α1-adrenergic receptor antagonist prazosin (40 µL, 1 mmol/L) or tamsulosin (50 µL, 1 mmol/L). ES of the SCG enhanced CB-evoked sympathoexcitation by 40-50% (P < 0.05) with no difference between rat strains. Unilateral SCGx attenuated the CB-evoked sympathoexcitation in SH (62%; P < 0.01) but was without effect in Wistar rats; it also abolished the ongoing firing of chemoreceptive petrosal neurones of SH rats, which became hyperpolarized. In Wistar rats, CB injections of phenylephrine enhanced CB-evoked sympathoexcitation (33%; P < 0.05), which was prevented by prazosin (26%; P < 0.05) in SH rats. Tamsulosin alone reproduced the effects of prazosin in SH rats and prevented the sensitizing effect of the SCG following ES. Within the CB, α1A- and α1B-adrenoreceptors were co-localized on both glomus cells and blood vessels. In conscious SH rats instrumented for recording blood pressure (BP), the CB-evoked pressor response was attenuated after SCGx, and systolic BP fell by 16 ± 4.85 mmHg. CONCLUSIONS: The sympathetic innervation of the CB is tonically activated and sensitizes the CB of SH but not Wistar rats. Furthermore, sensitization of CB-evoked reflex sympathoexcitation appears to be mediated by α1-adrenoceptors located either on the vasculature and/or glomus cells. The SCG is novel target for controlling CB pathophysiology in hypertension.