Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 154(2): 355-374, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38734386

RESUMO

BACKGROUND: The contribution of Staphylococcus aureus to the exacerbation of atopic dermatitis (AD) is widely documented, but its role as a primary trigger of AD skin symptoms remains poorly explored. OBJECTIVES: This study sought to reappraise the main bacterial factors and underlying immune mechanisms by which S aureus triggers AD-like inflammation. METHODS: This study capitalized on a preclinical model, in which different clinical isolates were applied in the absence of any prior experimental skin injury. RESULTS: The development of S aureus-induced dermatitis depended on the nature of the S aureus strain, its viability, the concentration of the applied bacterial suspension, the production of secreted and nonsecreted factors, as well as the activation of accessory gene regulatory quorum sensing system. In addition, the rising dermatitis, which exhibited the well-documented AD cytokine signature, was significantly inhibited in inflammasome adaptor apoptosis-associated speck-like protein containing a CARD domain- and monocyte/macrophage-deficient animals, but not in T- and B-cell-deficient mice, suggesting a major role for the innate response in the induction of skin inflammation. However, bacterial exposure generated a robust adaptive immune response against S aureus, and an accumulation of S aureus-specific γδ and CD4+ tissue resident memory T cells at the site of previous dermatitis. The latter both contributed to worsen the flares of AD-like dermatitis on new bacteria exposures, but also, protected the mice from persistent bacterial colonization. CONCLUSIONS: These data highlight the induction of unique AD-like inflammation, with the generation of proinflammatory but protective tissue resident memory T cells in a context of natural exposure to pathogenic S aureus strains.


Assuntos
Dermatite Atópica , Células T de Memória , Pele , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Dermatite Atópica/imunologia , Dermatite Atópica/microbiologia , Staphylococcus aureus/imunologia , Camundongos , Pele/imunologia , Pele/microbiologia , Pele/patologia , Infecções Estafilocócicas/imunologia , Células T de Memória/imunologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Feminino , Citocinas/metabolismo , Citocinas/imunologia , Exacerbação dos Sintomas , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/microbiologia
2.
PLoS Pathog ; 13(8): e1006579, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28832671

RESUMO

Pore-forming toxins are potent virulence factors secreted by a large array of bacteria. Here, we deciphered the action of ExlA from Pseudomonas aeruginosa and ShlA from Serratia marcescens on host cell-cell junctions. ExlA and ShlA are two members of a unique family of pore-forming toxins secreted by a two-component secretion system. Bacteria secreting either toxin induced an ExlA- or ShlA-dependent rapid cleavage of E-cadherin and VE-cadherin in epithelial and endothelial cells, respectively. Cadherin proteolysis was executed by ADAM10, a host cell transmembrane metalloprotease. ADAM10 activation is controlled in the host cell by cytosolic Ca2+ concentration. We show that Ca2+ influx, induced by ExlA or ShlA pore formation in the plasma membrane, triggered ADAM10 activation, thereby leading to cadherin cleavage. Our data suggest that ADAM10 is not a cellular receptor for ExlA and ShlA, further confirming that ADAM10 activation occurred via Ca2+ signalling. In conclusion, ExlA- and ShlA-secreting bacteria subvert a regulation mechanism of ADAM10 to activate cadherin shedding, inducing intercellular junction rupture, cell rounding and loss of tissue barrier integrity.


Assuntos
Proteína ADAM10/metabolismo , Proteínas de Bactérias/metabolismo , Caderinas/metabolismo , Infecções por Bactérias Gram-Negativas/metabolismo , Proteínas Hemolisinas/metabolismo , Animais , Toxinas Bacterianas/metabolismo , Western Blotting , Cálcio/metabolismo , Ativação Enzimática , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Pseudomonas aeruginosa/patogenicidade , Serratia marcescens/patogenicidade , Virulência/fisiologia , Fatores de Virulência/metabolismo
4.
PLoS Pathog ; 13(1): e1006092, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28060920

RESUMO

Toll/interleukin-1 receptor (TIR) domains in Toll-like receptors are essential for initiating and propagating the eukaryotic innate immune signaling cascade. Here, we investigate TirS, a Staphylococcus aureus TIR mimic that is part of a novel bacterial invasion mechanism. Its ectopic expression in eukaryotic cells inhibited TLR signaling, downregulating the NF-kB pathway through inhibition of TLR2, TLR4, TLR5, and TLR9. Skin lesions induced by the S. aureus knockout tirS mutant increased in a mouse model compared with wild-type and restored strains even though the tirS-mutant and wild-type strains did not differ in bacterial load. TirS also was associated with lower neutrophil and macrophage activity, confirming a central role in virulence attenuation through local inflammatory responses. TirS invariably localizes within the staphylococcal chromosomal cassettes (SCC) containing the fusC gene for fusidic acid resistance but not always carrying the mecA gene. Of note, sub-inhibitory concentration of fusidic acid increased tirS expression. Epidemiological studies identified no link between this effector and clinical presentation but showed a selective advantage with a SCCmec element with SCC fusC/tirS. Thus, two key traits determining the success and spread of bacterial infections are linked.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Glicoproteínas de Membrana/genética , Proteínas de Ligação às Penicilinas/genética , Receptores de Interleucina-1/genética , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Ácido Fusídico/farmacologia , Células HEK293 , Humanos , Macrófagos/imunologia , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Neutrófilos/imunologia , Receptores de Interleucina-1/imunologia , Transdução de Sinais/imunologia , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Receptores Toll-Like/genética
5.
Ecol Lett ; 15(6): 603-10, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22487404

RESUMO

The potential role of pathogens or parasites in maintaining species coexistence is well documented. However, the impact of vertically transmitted symbionts, that can markedly modify their host's biology, is largely unknown. Some females of the Drosophila parasitoid Leptopilina boulardi are infected with an inherited virus (LbFV). The virus forces females to lay supernumerary eggs in already parasitised hosts, thus allowing its horizontal transmission. Using two independent experimental procedures, we found that LbFV impacts inter-specific competition between L. boulardi and the related L. heterotoma. While L. boulardi rapidly outcompetes L. heterotoma in the absence of the virus, L. heterotoma was able to maintain or even to eliminate L. boulardi in the presence of LbFV. By forcing females to superparasitise, LbFV induced egg wastage in L. boulardi thus explaining its impact on the competition outcome. We conclude that this symbiont whose transmission is L. boulardi-density-dependant may affect the coexistence of Leptopilina species.


Assuntos
Comportamento Animal , Drosophila/parasitologia , Interações Hospedeiro-Parasita , Oviposição , Vespas/virologia , Animais , Comportamento Competitivo , Feminino , Carga Parasitária , Vespas/fisiologia
6.
Adv Parasitol ; 70: 333-63, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19773077

RESUMO

Insect parasitoids are often infected with heritable viruses. Some of them, such as polydnaviruses, have evolved toward an obligatory relationship with the parasitoid because they are necessary to protect the parasitoid egg from the host immune reaction. However, recent and past discoveries have revealed the presence of facultative inherited viruses in parasitoids for which no clear phenotypic effect was observed. In this chapter, we present how such an inherited virus was recently discovered in the Drosophila parasitoid, Leptopilina boulardi. We show that this virus is responsible for an increase in the superparasitism tendency of the infected females. This alteration is beneficial for the virus, since superparasitism conditions permit the horizontal transmission of the virus. We review theoretical developments suggesting that this leads to a conflict of interest between the parasitoid and the virus. The direct and indirect influence of the virus on several other fitness traits has also been studied both empirically and theoretically, in particular the egg load. Finally, because the frequency of horizontal transmission is a crucial parameter for the evolution of the superparasitism manipulation, we present an attempt to select the virus for high or low manipulation intensity.


Assuntos
Drosophila/parasitologia , Vírus de Insetos/fisiologia , Vespas/virologia , Adaptação Biológica/fisiologia , Animais , Evolução Biológica , Drosophila/virologia , Feminino , Interações Hospedeiro-Parasita/fisiologia , Masculino , Oviposição/fisiologia , Reprodução/fisiologia , Superinfecção/parasitologia , Vespas/fisiologia
7.
Appl Environ Microbiol ; 75(3): 703-10, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19060167

RESUMO

For insects, the prevalence of numerous vertically transmitted viruses can be high in their host populations. These viruses often have few, if any, pathological effects on their hosts, and consequently, many of them can remain unnoticed for long periods, despite their potential role in the evolution of the host phenotype. Some females of Leptopilina boulardi, a solitary parasitoid of Drosophila larvae, are infected by an inherited virus (LbFV) that manipulates the behavior of the wasp by increasing its tendency to lay eggs in a host that is already parasitized (superparasitism). This behavioral alteration allows horizontal transmission of the virus within superparasitized Drosophila larvae. Using suppressive subtractive hybridization with infected and uninfected lines, we identified one putative viral sequence. Based on this sequence, we developed a simple PCR test. We tested the correlation between the superparasitism phenotype and PCR amplification of the putative viral marker using several experimental conditions (including horizontal transfers) and several parasitoid genotypes. All of the results revealed that there was a perfect match between the superparasitism phenotype and the amplification profile, which validated use of the molecular marker as a tool to track the presence of the virus and provided the first genomic data for this fascinating virus. The results also show that there was very efficient horizontal and vertical transmission of LbFV, which probably explains its high prevalence in the French populations that we sampled (67 and 70% of infected females). This manipulative virus is likely to play a major role in the ecology and evolution of its parasitoid host.


Assuntos
Comportamento Animal , Himenópteros/virologia , Viroses/fisiopatologia , Vírus/isolamento & purificação , Vírus/patogenicidade , Animais , Transmissão de Doença Infecciosa , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA