Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(18): 5436-5443, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38656103

RESUMO

The ultrahigh surface area of two-dimensional materials can drive multimodal coupling between optical, electrical, and mechanical properties that leads to emergent dynamical responses not possible in three-dimensional systems. We observed that optical excitation of the WS2 monolayer above the exciton energy creates symmetrically patterned mechanical protrusions which can be controlled by laser intensity and wavelength. This observed photostrictive behavior is attributed to lattice expansion due to the formation of polarons, which are charge carriers dressed by lattice vibrations. Scanning Kelvin probe force microscopy measurements and density functional theory calculations reveal unconventional charge transport properties such as the spatially and optical intensity-dependent conversion in the WS2 monolayer from apparent n- to p-type and the subsequent formation of effective p-n junctions at the boundaries between regions with different defect densities. The strong opto-electrical-mechanical coupling in the WS2 monolayer reveals previously unexplored properties, which can lead to new applications in optically driven ultrathin microactuators.

2.
Proc Natl Acad Sci U S A ; 114(44): E9188-E9196, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29042509

RESUMO

We have computed the surface energies, work functions, and interlayer surface relaxations of clean (111), (100), and (110) surfaces of Al, Cu, Ru, Rh, Pd, Ag, Pt, and Au. We interpret the surface energy from liquid metal measurements as the mean of the solid-state surface energies over these three lowest-index crystal faces. We compare experimental (and random phase approximation) reference values to those of a family of nonempirical semilocal density functionals, from the basic local density approximation (LDA) to our most advanced general purpose meta-generalized gradient approximation, strongly constrained and appropriately normed (SCAN). The closest agreement is achieved by the simplest density functional LDA, and by the most sophisticated one, SCAN+rVV10 (Vydrov-Van Voorhis 2010). The long-range van der Waals interaction, incorporated through rVV10, increases the surface energies by about 10%, and increases the work functions by about 3%. LDA works for metal surfaces through two known error cancellations. The Perdew-Burke-Ernzerhof generalized gradient approximation tends to underestimate both surface energies (by about 24%) and work functions (by about 4%), yielding the least-accurate results. The amount by which a functional underestimates these surface properties correlates with the extent to which it neglects van der Waals attraction at intermediate and long range. Qualitative arguments are given for the signs of the van der Waals contributions to the surface energy and work function. A standard expression for the work function in Kohn-Sham (KS) theory is shown to be valid in generalized KS theory. Interlayer relaxations from different functionals are in reasonable agreement with one another, and usually with experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA