Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(4): 2354-2366, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38481091

RESUMO

This work reports an "all-in-one" theranostic upconversion luminescence (UCL) system having potential for both diagnostic and therapeutic applications. Despite considerable efforts in designing upconversion nanoparticles (UCNPs) for multimodal imaging and tumor therapy, there are few reports investigating dual modality SPECT/optical imaging for theranostics. Especially, research focusing on in vivo biodistribution studies of intrinsically radiolabeled UCNPs after intravenous injection is of utmost importance for the potential clinical translation of such formulations. Here, we utilized the gamma emission from 169Er and 171Er radionuclides for the demonstration of radiolabeled ZnAl2O4:171/169Er3+ as a potent agent for dual-modality SPECT/optical imaging. No uptake of radio nanoformulation was detected in the skeleton after 4 h of administration, which evidenced the robust integrity of ZnAl2O4:169/171Er3+. Combining the therapeutics using the emission of ß- particulates from 169Er and 171Er will be promising for the radio-theranostic application of the synthesized ZnAl2O4:169/171Er3+ nanoformulation. Cell toxicity studies of ZnAl2O4:1%Er3+ nanoparticles were examined by an MTT assay in B16F10 mouse melanoma cell lines, which demonstrated good biocompatibility. In addition, we explored the mechanism of UCL modulation via defect engineering by Bi3+ codoping in the ZnAl2O4:Er3+ upconversion nanophosphor. The UCL color tuning was successfully achieved from the red to the green region as a function of Bi3+ codoping concentrations. Further, we tried to establish a correlation of UCL tuning with the intrinsic oxygen and cation vacancy defects as a function of Bi3+ codoping concentrations with the help of electron paramagnetic resonance (EPR) and positron annihilation lifetime spectroscopy (PALS) studies. This study contributes to building a bridge between nature of defects and UC luminescence that is crucial for the design of advanced UCNPs for theranostics.


Assuntos
Luminescência , Nanopartículas , Animais , Camundongos , Nanopartículas/química , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
2.
Eur J Nucl Med Mol Imaging ; 51(6): 1558-1573, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270686

RESUMO

PURPOSE: Classical brachytherapy of solid malignant tumors is an invasive procedure which often results in an uneven dose distribution, while requiring surgical removal of sealed radioactive seed sources after a certain period of time. To circumvent these issues, we report the synthesis of intrinsically radiolabeled and gum Arabic glycoprotein functionalized [169Yb]Yb2O3 nanoseeds as a novel nanoscale brachytherapy agent, which could directly be administered via intratumoral injection for tumor therapy. METHODS: 169Yb (T½ = 32 days) was produced by neutron irradiation of enriched (15.2% in 168Yb) Yb2O3 target in a nuclear reactor, radiochemically converted to [169Yb]YbCl3 and used for nanoparticle (NP) synthesis. Intrinsically radiolabeled NP were synthesized by controlled hydrolysis of Yb3+ ions in gum Arabic glycoprotein medium. In vivo SPECT/CT imaging, autoradiography, and biodistribution studies were performed after intratumoral injection of radiolabeled NP in B16F10 tumor bearing C57BL/6 mice. Systematic tumor regression studies and histopathological analyses were performed to demonstrate therapeutic efficacy in the same mice model. RESULTS: The nanoformulation was a clear solution having high colloidal and radiochemical stability. Uniform distribution and retention of the radiolabeled nanoformulation in the tumor mass were observed via SPECT/CT imaging and autoradiography studies. In a tumor regression study, tumor growth was significantly arrested with different doses of radiolabeled NP compared to the control and the best treatment effect was observed with ~ 27.8 MBq dose. In histopathological analysis, loss of mitotic cells was apparent in tumor tissue of treated groups, whereas no significant damage in kidney, lungs, and liver tissue morphology was observed. CONCLUSIONS: These results hold promise for nanoscale brachytherapy to become a clinically practical treatment modality for unresectable solid cancers.


Assuntos
Braquiterapia , Itérbio , Animais , Braquiterapia/métodos , Camundongos , Itérbio/química , Distribuição Tecidual , Nanopartículas/química , Marcação por Isótopo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Camundongos Endogâmicos C57BL , Goma Arábica/química , Feminino , Glicoproteínas/química , Linhagem Celular Tumoral , Radioisótopos/química , Radioisótopos/uso terapêutico
3.
bioRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38260702

RESUMO

The chief barrier to studies of how genetic coding emerged is the lack of experimental models for ancestral aminoacyl-tRNA synthetases (AARS). We hypothesized that conserved core catalytic sites could represent such ancestors. That hypothesis enabled engineering functional "urzymes" from TrpRS, LeuRS, and HisRS. We describe here a fourth urzyme, GlyCA, detected in an open reading frame from the genomic record of the arctic fox, Vulpes lagopus. GlyCA is homologous to a bacterial heterotetrameric Class II GlyRS-B. Alphafold2 predicted that the N-terminal 81 amino acids would adopt a 3D structure nearly identical to the HisRS urzyme (HisCA1). We expressed and purified that N-terminal segment. Enzymatic characterization revealed a robust single-turnover burst size and a catalytic rate for ATP consumption well in excess of that previously published for HisCA1. Time-dependent aminoacylation of tRNAGly proceeds at a rate consistent with that observed for amino acid activation. In fact, GlyCA is actually 35 times more active in glycine activation by ATP than the full-length GlyRS-B α-subunit dimer. ATP-dependent activation of the 20 canonical amino acids favors Class II amino acids that complement those favored by HisCA and LeuAC. These properties reinforce the notion that urzymes represent the requisite ancestral catalytic activities to implement a reduced genetic coding alphabet.

4.
Arch Biochem Biophys ; 728: 109358, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35872323

RESUMO

Protein tyrosine nitration (PTN), a highly selective post translational modification, occurs in both prokaryotic and eukaryotic cells under nitrosative stress. However, its physiological function is not yet clear. Like many gut pathogens, Vibrio cholerae also faces nitrosative stress, which makes its proteome more vulnerable to PTN. Here, we report for the first time in-vivo PTN in V. cholerae by immunoblotting and LC-ESI-MS/MS proteomic analysis. Our results indicated that in-vivo PTN in V. cholerae was culture media independent. Surprisingly, in-vivo PTN was reduced in V. cholerae proteome under anaerobic or hypoxic condition in a nutrient deprived state. Interestingly, intracellular nitrate content was more than the nitrite content in V. cholerae under anaerobic conditions. Additionally, biochemical measurement of GSH/GSSG ratio, activities of catalase and SOD, ROS and RNS imaging by confocal microscopy confirmed a relative intracellular oxidizing environment in V. cholerae under anaerobic conditions. This altered redox environment favors the oxidation of nitrite which may be generated from protein denitration enriching the intracellular nitrate pool. The cell survival of V. cholerae can finally be facilitated by nitrate reductase (NapA) utilizing that nitrate pool. Our cell viability study using wild type and ΔnapA strain of V. cholerae also supported the role of NapA mediated cell survival under nutrient deprived anaerobic conditions. In spite of having nitrate reductase (NapA), V. cholerae lacks any nitrite reductase (NiR). Hence, in-vivo nitration may provide an avenue for toxic nitrite storage and also may help in nitrosative stress tolerance mechanism preventing further unnecessary protein nitration in V. cholerae proteome.


Assuntos
Vibrio cholerae , Anaerobiose , Proteínas de Bactérias , Sobrevivência Celular , Nitratos , Nitritos , Nutrientes , Proteoma , Proteômica , Espectrometria de Massas em Tandem
5.
Appl Radiat Isot ; 188: 110352, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35792353

RESUMO

Calcium-45 [T½ = 163 d, Eß (max) = 0.3 MeV] is a pure ß- emitting radioisotope which can be envisaged for potential use in palliative care of pain due to skeletal metastases of primary cancer. During production of 45Ca in nuclear reactor via 44Ca (n,γ) 45Ca route, 46Sc is co-produced as a radionuclidic impurity. In this study, we have optimized a single-step solvent extraction procedure for complete removal of 46Sc impurity from [45Ca]CaCl2. The purified radiotracer was administered intravenously in normal Wistar rats and preferential bone uptake could be demonstrated by ex vivo biodistribution studies.


Assuntos
Dor , Cuidados Paliativos , Animais , Cloreto de Cálcio , Radioisótopos de Cálcio , Humanos , Cuidados Paliativos/métodos , Radioisótopos , Ratos , Ratos Wistar , Solventes , Distribuição Tecidual
6.
Front Microbiol ; 13: 847832, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479629

RESUMO

Macrophomina phaseolina is a global devastating necrotrophic fungal pathogen. It causes charcoal rot disease in more than 500 host plants including major food crops, pulse crops, fiber crops, and oil crops. Despite having the whole-genome sequence of M. phaseolina, understanding the M. phaseolina genome-based plant-pathogen interactions is limited in the absence of direct experimental proof of secretion. Thus, it is essential to understand the host-microbe interaction and the disease pathogenesis, which can ensure global agricultural crop production and security. An in silico-predicted secretome of M. phaseolina is unable to represent the actual secretome. We could identify 117 proteins present in the secretome of M. phaseolina using liquid chromatography-electrospray ionization-tandem mass spectrometry. Data are available via ProteomeXchange with identifier PXD032749. An array of putative virulence factors of M. phaseolina were identified in the present study using solid-state culture. Similar virulence factors have been reported in other plant pathogenic fungi also. Among the secretory fungal proteins with positive economic impacts, lignocellulolytic enzymes are of prime importance. Further, we validated our results by detecting the cell wall-degrading enzymes xylanase, endoglucanase, and amylase in the secretome of M. phaseolina. The present study may provide a better understanding about the necrotrophic fungi M. phaseolina, which modulate the host plant defense barriers using secretory proteins.

7.
Arch Microbiol ; 204(1): 62, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34940926

RESUMO

Macrophomina phaseolina, a necrotrophic fungal pathogen is known to cause charcoal rot disease in food crops, pulse crops, oil crops and cotton and fibre crops. Necrotrophic fungi survive on dead plant tissue. It is well known that reactive oxygen species (ROS) are produced by the host plant during plant-pathogen interaction. However, it is still unclear how M. phaseolina can overcome the ROS-induced cellular damage. To mimic the invasion of M. phaseolina inside the plant cell wall, we developed solid substrate fermentation where M. phaseolina spore suspension was inoculated on a wheat bran bed and incubated for vegetative growth. To analyse the secretome of M. phaseolina after different day interval, its secretory material was collected and concentrated. Both superoxide dismutase (SOD) and catalase were detected in the secretome by zymogram. The presence of SOD and catalase was further confirmed by liquid chromatography based mass spectrometry. The physicochemical properties of M. phaseolina catalase in terms of stability towards pH, temperature, metal ions and chaotropic agent and inhibitors indicated its fitness at different environmental conditions. Apart from the production of catalase in SSF, the studies on this particular microorganism may also have significance in necrotrophic fungal pathogen and their susceptible host plant interaction.


Assuntos
Ascomicetos/enzimologia , Catalase , Superóxido Dismutase , Doenças das Plantas/microbiologia , Secretoma
8.
Nitric Oxide ; 88: 35-44, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30981896

RESUMO

Vibrio cholerae faces nitrosative stress during successful colonization in intestine. Very little information is available on the nitrosative stress protective mechanisms of V. cholerae. Reports show that NorR regulon control two genes hmpA and nnrS responsible for nitric oxide (NO) detoxification in V. cholerae. In the present study we first time report a novel role of V. cholerae catalases under nitrosative stress. Using zymogram analysis of catalase we showed that KatB and KatG activity were induced within 30 min in V. cholerae in the presence of sodium nitroprusside (SNP), a NO donor compound. Surprisingly, V. cholerae cell survival was found to be decreased under nitrosative stress if catalase activities were blocked by ATz, a catalase inhibitor. Flow cytometry study was conducted to detect reactive oxygen species (ROS) and reactive nitrogen species (RNS) using DHE and DHR123, fluorescent probes respectively. Short exposure of SNP to V. cholerae did not generate ROS but RNS was detectable within 30 min. Total glutathione content was increased in V. cholerae cells under nitrosative stress. Furthermore, Superoxide dismutase (SOD) and Glutathione reductase (GR) activities remained unchanged under nitrosative stress in V. cholerae indicated antioxidant role of NO which could produce peroxynitrite. To investigate the role of catalase induction under nitrosative stress in V. cholerae, we conducted peroxynitrite reductase assay using cell lysates. Interestingly, SNP treated V. cholerae cell lysates showed lowest DHR123 oxidation compared to the control set. The extent of DHR123 oxidation was more in V. cholerae cell lysate when catalases were blocked by ATz.


Assuntos
Proteínas de Bactérias/metabolismo , Catalase/metabolismo , Estresse Nitrosativo/fisiologia , Espécies Reativas de Nitrogênio/fisiologia , Vibrio cholerae/fisiologia , Amitrol (Herbicida)/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Catalase/antagonistas & inibidores , Catalase/genética , Indução Enzimática , Inibidores Enzimáticos , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia
9.
Microbiol Res ; 206: 82-90, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29146263

RESUMO

Nitric Oxide (NO) and its associated reactive nitrogen species (RNS) produce nitrosative stress under various pathophysiological conditions in eukaryotes. The fission yeast Schizosaccharomyces pombe regulates stress response mainly through the Sty1-Atf1 MAP Kinase pathway. The present study deals with the role of transcription factor Atf1 and Sty1 in S. pombe under nitrosative stress. In this study, exposure to an NO donor resulted in S-phase slowdown with associated mitotic block in S. pombe. Deletion of sty1 and atf1 in S. pombe had differential growth sensitivity towards NO donor. Both Sty1 and Atf1 were involved in regulating mitotic slowdown in S. pombe under nitrosative stress. Experimental data obtained in this study reveals a novel role of Atf1 in initiating the replication slowdown in S. pombe under nitrosative stress. Both Sty1 and Atf1 were accumulated in the nucleus in S. pombe under nitrosative stress in a concentration and time dependent manner. Atf1 is also found to be nuclear delocalized under longer nitrosative stress.


Assuntos
Fator 1 Ativador da Transcrição/genética , Fator 1 Ativador da Transcrição/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Nitrosativo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Ciclo Celular , Sobrevivência Celular , Replicação do DNA , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Óxido Nítrico/metabolismo , Proteínas Nucleares , Estresse Oxidativo , Fosforilação , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/patogenicidade
10.
Appl Biochem Biotechnol ; 182(3): 871-884, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28000045

RESUMO

Vibrio cholerae, the causative agent of cholera, poses serious threats to humans worldwide. V. cholerae faces host inflammatory response and encounters nitrosative stress before establishing successful colonization. It is not clear how V. cholerae combats nitric oxide and reactive nitrogen species. In the present study, we used three clinical strains of V. cholerae and tested their nitrosative stress response pattern towards sodium nitroprusside (SNP) and S-Nitrosoglutathione (GSNO). Among them, V. cholerae, belonging to both O1 and O139 serotypes, showed moderate resistance to SNP and GSNO. However, a V. cholerae strain belonging to non O1 and non O139 showed sensitivity to SNP but resistance towards GSNO. Reduced glutathione and glutathione reductase play a significant role to combat nitrosative stress in V. cholerae. This is the first report where we show the presence of GSNO reductase activity in V. cholerae and that it plays an important role to detoxify S-Nitrosoglutathione. GSNO reductase activity of V. cholerae was regulated by posttranslational modification through S-nitrosylation under in vitro conditions which could be reversed by dithiothreitol (DTT). In addition, we show that biofilm formation remained unaffected under nitrosative stress in V. cholerae.


Assuntos
Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/metabolismo , Nitroprussiato/farmacologia , Estresse Oxidativo/efeitos dos fármacos , S-Nitrosoglutationa/farmacologia , Vibrio cholerae/enzimologia , Humanos
11.
Artigo em Inglês | MEDLINE | ID: mdl-24334381

RESUMO

Biochemical networks normally operate in the neighborhood of one of its multiple steady states. It may reach from one steady state to other within a finite time span. In this paper, a closed-loop control scheme is proposed to steer states of the glycolysis and glycogenolysis (GG) pathway from one of its steady states to other. The GG pathway is modeled in the synergism and saturation system formalism, known as S-system. This S-system model is linearized into the controllable Brunovsky canonical form using a feedback linearization technique. For closed-loop control, the linear-quadratic regulator (LQR) and the linear-quadratic gaussian (LQG) regulator are invoked to design a controller for tracking prespecified steady states. In the feedback linearization technique, a global diffeomorphism function is proposed that facilitates in achieving the regulation requirement. The robustness of the regulated GG pathway is studied considering input perturbation and with measurement noise.


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Glicogenólise/fisiologia , Glicólise/fisiologia , Modelos Biológicos , Retroalimentação , Modelos Lineares
12.
IEEE Trans Nanobioscience ; 12(2): 128-34, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23694697

RESUMO

A novel analysis and synthesis framework is devised for synergism and saturation system, commonly known as S-system, for improving the robustness of the TCA cycle. In order to minimize the perturbation sensitivity, a measure of robustness of the network, a new design framework is proposed. The design constraints are formulated in computationally attractive convex optimization framework. The proposed multi-objective optimization problem, framed as Linear Matrix Inequality (LMI), makes a trade-off between the robustness and the control effort of the synthesized TCA cycle.


Assuntos
Ciclo do Ácido Cítrico , Dictyostelium/metabolismo , Modelos Biológicos , Simulação por Computador , Biologia de Sistemas
13.
IEEE Trans Biomed Eng ; 60(2): 554-61, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23204270

RESUMO

A robust synthesis technique is devised for synergism and saturation systems, commonly known as S-systems, for controlling the steady states of the glycolysis-glycogenolysis pathway. The development of the robust biochemical network is essential owing to the fragile response to the perturbation of intrinsic and extrinsic parameters of the nominal S-system. The synthesis problem is formulated in a computationally attractive convex optimization framework. The linear matrix inequalities are framed to aim at the minimization of steady-state error, improvement of robustness, and utilization of minimum control input to the biochemical network.


Assuntos
Glicogenólise , Glicólise , Modelos Biológicos , Simulação por Computador , Cinética , Software , Biologia de Sistemas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA